269C, Vese

Useful results 2
Additional results and remarks
(see "Finite Elements, Mathematical Aspects", Vol. IV, J. Tinsley Oden and Graham F. Carey, Prentice Hall, 1983)

Thm. The Generalized Lax-Milgram Theorem: Let H and G be real Hilbert spaces and let $B(\cdot, \cdot)$ denote a bilinear form on $H \times G$ which has the following properties:
(i) $B(\cdot, \cdot)$ is continuous; that is, there exists a constant $M>0$ such that

$$
|B(u, v)| \leq M\|u\|_{H}\|v\|_{G}, \text { for any } u \in H, v \in G .
$$

(ii) $B(\cdot, \cdot)$ is coercive in the sense that there exists a constant α such that

$$
\inf _{u \in H,\|u\|_{H}=1} \sup _{v \in G,\|v\|_{G} \leq 1}|B(u, v)| \geq \alpha>0 .
$$

(iii) For every $v \neq 0$ in G,

$$
\sup _{u \in H}|B(u, v)|>0 .
$$

Then there exists a unique $u^{*} \in H$ such that

$$
B\left(u^{*}, v\right)=F(v), \text { for all } v \in G
$$

wherein $F \in G^{\prime}$. Moreover,

$$
\left\|u^{*}\right\|_{H} \leq \frac{1}{\alpha}\|F\|_{G^{\prime}}
$$

If $H=G$, then (ii) and (iii) can be replaced by the simpler condition:
(iv) There exists an $\alpha>0$ such that

$$
B(u, u) \geq \alpha\|u\|_{H}^{2}, \text { for all } u \in H
$$

(in this case, we say that B is H - coercive).
Here G^{\prime} denotes the dual of G, the space of continuous linear forms F on G.

Mixed Methods

Notations and conventions:

- H, Q are real Hilbert spaces with norms $\|\cdot\|_{H}$ and $\|\cdot\|_{Q}$ respectively.
- $a: H \times H$ is a symmetric, continuous bilinear form so that $M>0$ exists such that

$$
|a(u, v)| \leq M\|u\|_{H}\|v\|_{H}, \text { for all } u, v \in H
$$

- $b: H \times Q$ is a continuous bilinear form so that $m>0$ exists such that

$$
|b(u, q)| \leq m\|u\|_{H}\|q\|_{Q}, \text { for all } u \in H, q \in Q .
$$

- $f: H \rightarrow R$ is a continuous linear form on H.
- $g: Q \rightarrow R$ is a continuous linear form on Q.

We consider the weak variational formulation

$$
\begin{array}{r}
a(u, v)+b(v, p)=f(v), \text { for all } v \in H \\
b(u, q)=g(q) \text { for all } q \in Q . \tag{2}
\end{array}
$$

This corresponds to the abstract problem (in distributional sense)

$$
\begin{gathered}
A u+B^{*} p=f \text { in } H^{\prime}, \\
B u=g \text { in } Q^{\prime} .
\end{gathered}
$$

We also define:

$$
\begin{aligned}
& \operatorname{ker} B=\{v \in H \mid b(v, q)=0 \text { for all } q \in Q\}, \\
& \operatorname{ker} B^{*}=\{q \in Q \mid b(v, q)=0 \text { for all } v \in H\},
\end{aligned}
$$

and the quotient space

$$
Z=Q / \operatorname{ker} B^{*} .
$$

The quotient space Z consists of equivalence classes $[p]$ of the form

$$
[p]=\left\{q \in Q \mid p-q \in \operatorname{ker} B^{*}\right\} .
$$

We also assume that $g \in R g(B)$.
Note that $B u=g$ is a constraint, corresponding to an unknown Lagrange multiplier p in (1).

Problem (1)-(2) can be substituted by the following equivalent problem: introduce a bilinear form $B(\cdot, \cdot)$ defined on the product space $H \times Q$,
$B:(H \times Q) \times(H \times Q) \rightarrow R$, by

$$
B((u, p),(v, q))=a(u, v)+b(v, p)+b(u, q)
$$

and the linear form $F: H \times Q \rightarrow R$,

$$
F((v, q))=f(v)+g(q) .
$$

Then (1)-(2) can be written: find $(u, p) \in H \times Q$ s.t.

$$
\begin{equation*}
B((u, p),(v, q))=F((v, q)), \text { for all }(v, q) \in H \times Q . \tag{3}
\end{equation*}
$$

Also impose conditions: there is $\alpha_{0}>0$ s.t.

$$
\begin{equation*}
\alpha_{0}\left\|u_{0}\right\|_{H} \leq \sup _{v_{0} \in \operatorname{ker} B-\{0\}} \frac{\left|a\left(u_{0}, v_{0}\right)\right|}{\left\|v_{0}\right\|_{H}}, \text { for all } u_{0} \in \operatorname{ker} B \tag{4}
\end{equation*}
$$

and there is $\beta>$ s.t.

$$
\begin{equation*}
\beta \inf _{p_{0} \in \operatorname{ker} B^{*}}\left\|p+p_{0}\right\|_{Q}=\beta\|[p]\|_{Z} \leq \sup _{v \in H-\{0\}} \frac{|b(v, p)|}{\|v\|_{H}}, \text { for all } p \in Q \text {. } \tag{5}
\end{equation*}
$$

Conditions (4) and (5) are equivalent with: there is $\alpha>0$ s.t. for all $(u, p) \in H \times Q$,

$$
\alpha\left(\|u\|_{H}+\|[p]\|_{Z}\right) \leq \sup _{(v, q) \in H \times Q,(v, q) \neq(0,0)} \frac{|a(u, v)+b(v, p)+b(u, q)|}{\|v\|_{H}+\|q\|_{Q}} .
$$

Thm. Let conditions (4) and (5) hold for the continuous bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ defined in the beginning. Then there exists a unique solution $(u,[p]) \in H \times Z, Z=Q / \operatorname{ker} B^{*}$, of problem (3) with $g \in \operatorname{Rg}(B)$. The Lagrange multiplier p is then unique up to an arbitrary element of $\operatorname{ker} B^{*}$.

- Apply the above mixed method to the stationary Stokes equations.

