Notations:
For \(u \in H^m(\Omega) \), let
\[
\|u\|_{H^m(\Omega)} = \left(\sum_{|\alpha| \leq m} \int_{\Omega} |D^\alpha u(x)|^2 \, dx \right)^{1/2} = \left(\sum_{|\alpha| \leq m} \|D^\alpha u\|^2_{L^2(\Omega)} \right)^{1/2},
\]
\[
|u|_{H^m(\Omega)} = \left(\sum_{|\alpha| = m} \int_{\Omega} |D^\alpha u(x)|^2 \, dx \right)^{1/2} = \left(\sum_{|\alpha| = m} \|D^\alpha u\|^2_{L^2(\Omega)} \right)^{1/2}.
\]

Thm. (Poincaré's Inequality for \(H^1_0(\Omega) \))
Let \(\Omega \) be an open and bounded set in \(\mathbb{R}^n \). Then there is a positive constant \(C = C(\Omega) \) such that, for all \(u \in H^1_0(\Omega) \), we have Poincaré inequality:
\[
\|u\|^2_{L^2(\Omega)} \leq C \|\nabla u\|^2_{L^2(\Omega)}.
\]

Corollary: Let \(m > 0 \) be a positive integer, and let \(\Omega \) be an open and bounded set in \(\mathbb{R}^n \).
Then for \(u \in H^m_0(\Omega) \), we have
\[
\|u\|^2_{L^2(\Omega)} \leq C_m \sum_{|\alpha| = m} \|D^\alpha u\|^2_{L^2(\Omega)},
\]
where \(C_m = \text{constant} \), and \(C \) is the constant from the previous theorem.

Corollary: (same assumptions on \(\Omega \)). \(|u|_{H^m(\Omega)} \) is a norm on \(H^m_0(\Omega) \), equivalent to the norm \(\|u\|_{H^m(\Omega)} \).

Thm. Let \(\Omega \) be a bounded connected open set in \(\mathbb{R}^n \), with sufficiently regular boundary. Then we have for \(u \in H^1(\Omega) \), such that \(\int_{\Omega} u(x) \, dx = 0 \),
\[
\|u\|^2_{L^2(\Omega)} \leq P(\Omega) \|\nabla u\|^2_{L^2(\Omega)}.
\]

More generally, we have for \(u \in H^1(\Omega) \)
\[
\|u\|^2_{L^2(\Omega)} \leq P(\Omega) \|\nabla u\|^2_{L^2(\Omega)} + \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx \right)^2.
\]

Corollary: \(|u|_{H^1(\Omega)} = \|\nabla u\|_{L^2(\Omega)} \) is a norm equivalent with the norm \(\|u\|_{H^1(\Omega)} \) on the sub-space \(V_0 \) (closed in \(H^1(\Omega) \)) defined by:
\[
V_0 = \{ u \in H^1(\Omega) : \int_{\Omega} u(x) \, dx = 0 \}.
\]

Corollary: Let \(\Omega \) be a bounded connected open set in \(\mathbb{R}^n \), with sufficiently regular boundary \(\Gamma \). Suppose \(\Gamma = \Gamma_1 \cup \Gamma_2 \) with length (area) of \(\Gamma_2 > 0 \). Let
\[
V_{\Gamma_2} = \{ u \in H^1(\Omega) : u|_{\Gamma_2} = 0 \}.
\]
Then \(V_{\Gamma_2} \) is a closed sub-space of \(H^1(\Omega) \) and \(|u|_{H^1(\Omega)} = \|\nabla u\|_{L^2(\Omega)} \) is a norm equivalent with the norm \(\|u\|_{H^1(\Omega)} \) on the sub-space \(V_{\Gamma_2} \).
Remark:
(i) Suppose that Ω is a bounded connected open set in \mathbb{R}^n which is “very regular” ($\Gamma = \partial \Omega$ is a $n - 1$ dimensional manifold of class C^∞ and Ω locally on one side of Γ). For $u \in H^1(\Omega)$, let
\[
\|u\|_{H^1(\Omega),\Gamma}^2 = \|\nabla u\|_{L^2(\Omega)}^2 + \int_{\Gamma} |u|^2 d\Gamma,
\]
where $u|_{\Gamma}$ is the trace of u on Γ. Then there is a constant $C > 0$ such that
\[
\|u\|_{H^1(\Omega)} \leq C\|u\|_{H^1(\Omega),\Gamma},
\]
for all $u \in H^1(\Omega)$. Therefore, $\|u\|_{H^1(\Omega),\Gamma}$ is a norm equivalent to $\|u\|_{H^1(\Omega)}$ on $H^1(\Omega)$.

(ii) Let $V_{\Gamma} = \left\{ u \in H^1(\Omega), \int_{\Gamma} u d\Gamma = 0 \right\}$. Then V_{Γ} is a closed subspace of $H^1(\Omega)$, and $|u|_{H^1(\Omega)}$ is a norm equivalent to $\|u\|_{H^1(\Omega)}$ on V_{Γ}.

Corollary: Let Ω an open and bounded domain, with Lipschitz-continuous boundary $\Gamma = \partial \Omega$. Then there is a positive constant C such that
\[
\|u|_{\Gamma}\|_{L^2(\Gamma)} \leq C\|u\|_{H^1(\Omega)}.
\]

Corollary: Over the space $H_0^2(\Omega)$, $\|\Delta u\|_{L^2(\Omega)}$ is a norm, equivalent to $\|u\|_{H^2(\Omega)}$.

• For s a real number, then $u \in H^s(\mathbb{R}^n)$ if
\[
(1 + |\xi|^2)^{s/2} \hat{u}(\xi) \in L^2(\mathbb{R}^n), \quad \xi \in \mathbb{R}^n
\]
(with \hat{u} the Fourier transform of u).

We furnish $H^s(\mathbb{R}^n)$ with the norm
\[
\|u\|_s = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\hat{u}(\xi)|^2 d\xi \right)^{1/2}.
\]

For $s = m$ a non-negative integer, the space $H^s(\mathbb{R}^n)$ coincides with the usual space $H^m(\mathbb{R}^n)$.

• Thm: For $u \in H^1(\Omega)$, with $\Gamma = \partial \Omega$ of dimension $n - 1$ and piecewise of class C^1, we can define $u|_{\Gamma}$ (the trace of u on Γ) as an element of $H^{1/2}(\Gamma)$.

Thm: For every $u_0 \in H^{1/2}(\Gamma)$, there is a $u \in H^1(\Omega)$ such that $u|_{\Gamma} = u_0$.

Note: For such set Γ, we can give a definition of $H^{1/2}(\Gamma)$ (with the aid of local maps defining Γ, see Lions-Magenes, Necas, Dautray-Lions, etc).

We also have another version of the Trace theorem:

Thm: Assume Ω is bounded and $\Gamma = \partial \Omega$ of class C^1. Then there exists a bounded linear operator
\[
T : H^1(\Omega) \rightarrow L^2(\Gamma)
\]
such that
(i) $Tu = u|_{\Gamma}$ if $u \in H^1(\Omega) \cap C(\overline{\Omega})$
(ii) $\|Tu\|_{L^2(\Gamma)} \leq C\|u\|_{H^1(\Omega)},$
for each $u \in H^1(\Omega)$, with constant C depending only on Ω.