269C, Vese Useful results

Notations: For $u \in H^m(\Omega)$, let

$$\|u\|_{H^{m}(\Omega)} = \left(\sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}u(x)|^{2} dx\right)^{1/2} = \left(\sum_{|\alpha| \le m} \|D^{\alpha}u\|_{L^{2}(\Omega)}^{2}\right)^{1/2}$$
$$|u|_{H^{m}(\Omega)} = \left(\sum_{|\alpha| = m} \int_{\Omega} |D^{\alpha}u(x)|^{2} dx\right)^{1/2} = \left(\sum_{|\alpha| = m} \|D^{\alpha}u\|_{L^{2}(\Omega)}^{2}\right)^{1/2}.$$

Thm. (Poincaré's Inequality for $H_0^1(\Omega)$)

Let Ω be an open and bounded set in \mathbb{R}^n . Then there is a positive constant $C = C(\Omega)$ such that, for all $u \in H_0^1(\Omega)$, we have Poincaré inequality:

$$||u||_{L^{2}(\Omega)}^{2} \leq C ||\nabla u||_{L^{2}(\Omega)}^{2}.$$

Corollary: Let m > 0 be a positive integer, and let Ω be an open and bounded set in \mathbb{R}^n . Then for $u \in H_0^m(\Omega)$, we have

$$||u||_{L^{2}(\Omega)}^{2} \leq C_{m}C^{m}\sum_{|\alpha|=m} ||D^{\alpha}u||_{L^{2}(\Omega)}^{2}$$

 $C_m = \text{constant}$, and C is the constant from the previous theorem.

Corollary: (same assumptions on Ω). $|u|_{H^m(\Omega)}$ is a norm on $H_0^m(\Omega)$, equivalent to the norm $||u||_{H^m(\Omega)}$.

Thm. Let Ω be a bounded connected open set in \mathbb{R}^n , with sufficiently regular boundary. Then we have for $u \in H^1(\Omega)$, such that $\int_{\Omega} u(x) dx = 0$,

$$||u||_{L^{2}(\Omega)}^{2} \le P(\Omega) ||\nabla u||_{L^{2}(\Omega)}^{2}$$

More generally, we have for $u \in H^1(\Omega)$

$$||u||_{L^{2}(\Omega)}^{2} \leq P(\Omega) ||\nabla u||_{L^{2}(\Omega)}^{2} + \frac{1}{|\Omega|} \Big| \int_{\Omega} u(x) dx \Big|^{2}.$$

Corollary: $|u|_{H^1(\Omega)} = ||\nabla u||_{L^2(\Omega)}$ is a norm equivalent with the norm $||u||_{H^1(\Omega)}$ on the sub-space V_0 (closed in $H^1(\Omega)$) defined by:

$$V_0 = \{ u \in H^1(\Omega) : \int_{\Omega} u(x) dx = 0 \}.$$

Corollary: Let Ω be a bounded connected open set in \mathbb{R}^n , with sufficiently regular boundary Γ . Suppose $\Gamma = \Gamma_1 \cup \Gamma_2$ with length (area) of $\Gamma_2 > 0$. Let

$$V_{\Gamma_2} = \{ u \in H^1(\Omega) : u | _{\Gamma_2} = 0 \}.$$

Then V_{Γ_2} is a closed sub-space of $H^1(\Omega)$ and $|u|_{H^1(\Omega)} = ||\nabla u||_{L^2(\Omega)}$ is a norm equivalent with the norm $||u||_{H^1(\Omega)}$ on the sub-space V_{Γ_2} .

Remark:

(i) Suppose that Ω is a bounded connected open set in \mathbb{R}^n which is "very regular" ($\Gamma = \partial \Omega$ is a n-1 dimensional manifold of class \mathbb{C}^{∞} and Ω locally on one side of Γ). For $u \in H^1(\Omega)$, let

$$||u||_{H^{1}(\Omega),\Gamma}^{2} = ||\nabla u||_{L^{2}(\Omega)}^{2} + \int_{\Gamma} |u|_{\Gamma}|^{2} d\Gamma,$$

where $u|_{\Gamma}$ is the trace of u on Γ . Then there is a constant C > 0 such that

$$||u||_{H^1(\Omega)} \le C ||u||_{H^1(\Omega),\Gamma},$$

for all $u \in H^1(\Omega)$. Therefore, $||u||_{H^1(\Omega),\Gamma}$ is a norm equivalent to $||u||_{H^1(\Omega)}$ on $H^1(\Omega)$.

(ii) Let $V_{\Gamma} = \left\{ u \in H^1(\Omega), \int_{\Gamma} u d\Gamma = 0 \right\}$. Then V_{Γ} is a closed subspace of $H^1(\Omega)$, and $|u|_{H^1(\Omega)}$ is a norm equivalent to $||u||_{H^1(\Omega)}$ on V_{Γ} .

Corollary: Let Ω an open and bounded domain, with Lipschitz-continuous boundary $\Gamma = \partial \Omega$. Then there is a positive constant C such that

$$||u|_{\Gamma}||_{L^{2}(\Gamma)} \leq C ||u||_{H^{1}(\Omega)}.$$

Corollary: Over the space $H_0^2(\Omega)$, $\| \bigtriangleup u \|_{L^2(\Omega)}$ is a norm, equivalent to $\| u \|_{H^2(\Omega)}$.

• For s a real number, then $u \in H^s(\mathbb{R}^n)$ if

$$(1+|\xi|^2)^{s/2}\hat{u} \in L^2(\mathbb{R}^n), \quad \xi \in \mathbb{R}^n$$

(with \hat{u} the Fourier transform of u).

We furnish $H^{s}(\mathbb{R}^{n})$ with the norm

$$||u||_s = \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^s |\hat{u}(\xi)|^2 d\xi\right)^{1/2}.$$

For s = m a non-negative integer, the space $H^{s}(\mathbb{R}^{n})$ coincides with the usual space $H^{m}(\mathbb{R}^{n})$.

• Thm: For $u \in H^1(\Omega)$, with $\Gamma = \partial \Omega$ of dimension n-1 and piecewise of class C^1 , we can define $u|_{\Gamma}$ (the trace of u on Γ) as an element of $H^{1/2}(\Gamma)$.

Thm: For every $u_0 \in H^{1/2}(\Gamma)$, there is a $u \in H^1(\Omega)$ such that $u|_{\Gamma} = u_0$.

Note: For such set Γ , we can give a definition of $H^{1/2}(\Gamma)$ (with the aid of local maps defining Γ , see Lions-Magenes, Necas, Dautray-Lions, etc).

We also have another version of the Trace theorem:

Thm: Assume Ω is bounded and $\Gamma = \partial \Omega$ of class C^1 . Then there exists a bounded linear operator

$$T: H^1(\Omega) \to L^2(\Gamma)$$

such that

(i) $Tu = u|_{\Gamma}$ if $u \in H^1(\Omega) \cap C(\overline{\Omega})$ (ii)

 $||Tu||_{L^{2}(\Gamma)} \leq C ||u||_{H^{1}(\Omega)},$

for each $u \in H^1(\Omega)$, with constant C depending only on Ω .