Practice problems with partial solutions

Spring 2003, 269 C, Vese
[1] Write the differential equation

$$
\begin{array}{rc}
-\triangle u+u=f(x, y), & (x, y) \in \Omega \\
u=1 & (x, y) \in \partial \Omega_{1} \\
\frac{\partial u}{\partial n}+u=x & (x, y) \in \partial \Omega_{2}
\end{array}
$$

where
$\Omega=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$,
$\partial \Omega_{1}=\left\{(x, y) \mid x^{2}+y^{2}=1, x \leq 0\right\}$,
$\partial \Omega_{2}=\left\{(x, y) \mid x^{2}+y^{2}=1, x>0\right\}$,
in a weak variational form and describe a piecewise-linear Galerkin finite element approximation for the problem.

Solution: (I will discuss here only the weak fromulation)
Let $\Gamma_{1}=\partial \Omega_{1}, \Gamma_{2}=\partial \Omega_{2}, \Gamma=\partial \Omega$. Change the notations: $(x, y)=$ $\left(x_{1}, x_{2}\right)$.

Let $V=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{1}\right\}$. Multiply the PDE by a test function and use Green's formula. This gives the following:

$$
\begin{aligned}
-\int_{\Omega} v \Delta u d x+\int_{\Omega} u v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\Gamma} v \frac{\partial u}{\partial n} d s & =\int_{\Omega} f v d x
\end{aligned}
$$

We have on the boundary:

$$
\int_{\Gamma} v \frac{\partial u}{\partial n} d s=\int_{\Gamma_{1}} v \frac{\partial u}{\partial n} d s+\int_{\Gamma_{2}} v \frac{\partial u}{\partial n} d s=0+\int_{\Gamma_{2}} v\left(x_{1}-u\right) d s
$$

therefore the weak formulation is: Find $u \in H^{1}(\Omega)$, with $u=1$ on Γ_{1}, such that

$$
\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x=\int_{\Omega} f v d x+\int_{\Gamma_{2}} v x d s
$$

for any $v \in V$.
Using the theorems from the class, it is possible to verify, without difficulty, that this problem satisfies the assumptions (i)-(iv) of the Lax-Milgram

Thm (exercise). Therefore, the problem has a unique solution (you may want to modify first the problem, by working with the new unknown variable $w=u-1$ for the L-M lemma).

Other points to be discussed (left as exercise): For a FEM, start with a triangulation T_{h}, define the space V_{h}, give the discrete formulation, mention the basis functions, let $v=\phi_{j}$ in the discrete weak problem, define the matrix A and the load vector b, discuss properties of A.

An error estimate gives us:

$$
\left|u-u_{h}\right|_{H^{1}(\Omega)} \leq C h|u|_{H^{2}(\Omega)} .
$$

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

$$
\begin{array}{rc}
-\nabla \cdot a(x) \nabla u+b(x) u=f(x), & x=\left(x_{1}, x_{2}\right) \in \Omega, \\
u=2, & x \in \partial \Omega_{1}, \\
\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}+u=2, & x \in \partial \Omega_{2},
\end{array}
$$

where
$\Omega=\left\{x \mid x_{1}>0, x_{2}>0, x_{1}+x_{2}<1\right\}$,
$\partial \Omega_{1}=\left\{x \mid x_{1}=0,0 \leq x_{2} \leq 1\right\} \cup\left\{x \mid x_{2}=0,0 \leq x_{1} \leq 1\right\}$,
$\partial \Omega_{2}=\left\{x \mid x_{1}>0, x_{2}>0, x_{1}+x_{2}=1\right\}$,
$0<a \leq a(x) \leq A, 0<b \leq b(x) \leq B$.
(b) Justify the approximation by analyzing the appropriate bilinear and linear forms. Give a convergence estimate and quote the appropriate thoerems for convergence.

Solution: (I will discuss here only the weak fromulation)
Let $\Gamma_{1}=\partial \Omega_{1}, \Gamma_{2}=\partial \Omega_{2}, \Gamma=\partial \Omega$.
The weak formulation is obtained as follows: let $V=\left\{v \in H^{1}(\Omega), v=\right.$ 0 on $\left.\Gamma_{1}\right\}$. Multiply the PDE in Ω by a test function $v \in V$, integrate over Ω and apply integration by parts:

$$
\begin{gathered}
-\int_{\Omega} v \nabla \cdot a(x) \nabla u d x+\int_{\Omega} b(x) u v d x=\int_{\Omega} f v d x \\
\int_{\Omega} a(x) \nabla u \cdot \nabla v-\int_{\Gamma} a(x) v \nabla u \cdot \vec{n} d s+\int_{\Omega} b(x) u v d x=\int_{\Omega} f v d x .
\end{gathered}
$$

We have:

$$
\begin{array}{r}
\int_{\Gamma} a(x) v \nabla u \cdot \vec{n} d s=\int_{\Gamma_{1}} a(x) v \nabla u \cdot \vec{n} d s+\int_{\Gamma_{2}} a(x) v \nabla u \cdot \vec{n} d s \\
=0+\int_{\Gamma_{2}} a(x) v \nabla u \cdot(1 ; 1) d s=\int_{\Gamma_{2}} a(x) v\left(\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}\right) d s=\int_{\Gamma_{2}} a(x) v(2-u) d s .
\end{array}
$$

Therefore, the weak formulation is: Find $u \in H^{1}(\Omega)$, with $u=2$ on Γ_{1}, such that

$$
\int_{\Omega}(a(x) \nabla u \cdot \nabla v+(a(x)+b(x)) u v) d x=\int_{\Omega} f v d x+\int_{\Gamma_{2}} 2 v d s
$$

for all $v \in V$.
To verify the assumptions (i)-(iv), use the fact that the functions a and b are strictly positive and bounded, and the theorems from the lecture. You may have to work with a new variable $w=u-2$ for the L-M lemma.

