HW #4, 269C Due during the week of May 27 - May 31st (note May 27 is a holiday).

[1] Recall the "coercive" inhomogeneous Neumann problem:

(D)
$$\left\{ -\Delta u + u = f \text{ in } \Omega, \quad \frac{\partial u}{\partial \vec{n}} = g \text{ on } \partial \Omega \right\}.$$

We know that the corresponding weak variational problem (with $V = H^1(\Omega)$) is: find $u \in H^1(\Omega)$ such that

$$(V) \quad \int_{\Omega} (\nabla u \cdot \nabla v + uv) dx = \int_{\Omega} f v dx + \int_{\partial \Omega} g v ds$$

for all $v \in H^1(\Omega)$. We also know that $(D) \Rightarrow (V)$.

Assume now that u, f, g are sufficiently smooth. Show that, if u is a smooth solution of (V) (for example $u \in C^2(\overline{\Omega})$, then u satisfies (D); in other words, $(V) \Rightarrow (D)$.

[2] Let K be a tetrahedron with vertices a^i , i = 1, ..., 4, and let a^{ij} denote the midpoint on the straight line $a^i a^j$, i < j. Show that a function $v \in P_2(K)$ is uniquely determined by the degrees of freedom: $v(a^i)$, $v(a^{ij})$, i, j = 1, ..., 4, i < j. Show that the corresponding finite element space V_h satisfies $V_h \subset C^0(\Omega)$.

[3] Let K be a triangle with vertices a^i , i = 1, 2, 3. Suppose that $v \in P_r(K)$ and that v vanishes on the side a^2a^3 . Prove that v has the form

$$v(x) = \lambda_1(x)w_{r-1}(x), \quad x \in K,$$

where $w_{r-1} \in P_{r-1}(K)$, and $\lambda_1(x)$ is the affine local basis function corresponding to the node a^1 .

[4] Let K be a triangle with vertices a^i , i = 1, 2, 3, and let a^{ij} , i < j, denote the midpoints of the sides of K. Let a^{123} denote the center of gravity of K. Prove that $v \in P_4(K)$ is uniquely determined by the following degrees of freedom

$$\begin{split} &v(a^{i}),\\ &\frac{\partial v}{\partial x_{j}}(a^{i}), \ i=1,2,3, \ j=1,2,\\ &v(a^{ij}), \ i,j=1,2,3, \ i< j,\\ &v(a^{123}), \ \frac{\partial v}{\partial x_{j}}(a^{123}), j=1,2, \end{split}$$

(typo in Exercise 3.8 in the textbook).

Also show that the functions in the corresponding finite element space V_h are continuous.