Evolution problems of first order in time ${ }^{1}$

1.1 Function spaces

We are given a pair of real, separable Hilbert spaces V, H; we denote by $(()$,$) the scalar product, \|\|$ the norm in V
(,) the scalar product, $|\mid$ the norm in H.
We suppose V is dense in H and we identify H with its dual H^{\prime}. We also denote the duality between V^{\prime} and V by (,).
1.2 The bilinear form $a(t ; u, v), t \in[0, T]$

For each $t \in[0, T]$, we are given a continuous bilinear form over $V \times V$ and we make the hypothesis:
(3.3) For every $u, v \in V$, the function $t \rightarrow a(t ; u, v)$ is measurable and there is a constant $M=M(T)>0$ (independent of $t \in] 0, T[, u, v)$ such that

$$
|a(t ; u, v)| \leq M\|u\|\|v\|
$$

for all $u, v \in V$.
Def. Let $a, b \in R$. Then

$$
W(V)=W\left(a, b ; V, V^{\prime}\right)=\left\{u ; u \in L^{2}(a, b ; V), u^{\prime} \in L^{2}\left(a, b ; V^{\prime}\right)\right\}
$$

Proposition. This is a Hilbert space equipped with the norm

$$
\|u\|_{W}=\left(\|u\|_{L^{2}(a, b ; V)}^{2}+\left\|u^{\prime}\right\|_{L^{2}\left(a, b ; V^{\prime}\right)}^{2}\right)^{1 / 2}=\left(\int_{a}^{b}\left[\|u(t)\|_{V}^{2}+\left\|u^{\prime}(t)\right\|_{V^{\prime}}^{2}\right] d t\right)^{1 / 2}
$$

We also assume (3.25) $a(t ; u, u) \geq \alpha\|u\|_{V}^{2}$, for any $t \in[0, T], u \in V$, and $u_{0} \in H, f \in L^{2}\left(V^{\prime}\right)$.

Evolution Problem (P) Find u satisfying $u \in W(V)$,

$$
\frac{d}{d t}(u(\cdot), v)+a(\cdot ; u(\cdot), v)=(f(\cdot), v)
$$

in the sense of distributions $\mathcal{D}^{\prime}(] 0, T[)$ for all $v \in V, u(0)=u_{0}$.
Remark. We have

$$
\frac{d}{d t}(u(\cdot), v)=\left(\frac{d}{d t} u(\cdot), v\right)
$$

for any $v \in V$.
Theorem 1. Then the solution of problem (P), if it exists, is unique.
Proof. Let u_{1}, u_{2} be two distinct solutions of (P), then $w=u_{1}-u_{2}$ satisfies $w \in W(V)$ and

$$
\left(\frac{d w}{d t}(\cdot), v\right)+a(\cdot ; w(\cdot), v)=0
$$

[^0]for any $v \in V$, with $w(0)=0$. Then by replacing v by $w(t)$ and integrating from 0 to t :
$$
\frac{1}{2}|w(t)|^{2}+\int_{0}^{t} a(s ; w(s), w(s)) d s=0
$$

Since $a(\cdot ; u, v)$ is $V-$ elliptic, we have then

$$
\frac{1}{2}|w(t)|^{2}<0 \Rightarrow w(t)=0 \text { for all } t \in[0, T]
$$

Theorem 2. There exists a solution u to problem (P), and $u \in W\left(0, T ; V, V^{\prime}\right)$.

Examples

1. Let Ω be an open and bounded subset of R^{n}, with boundary Γ, T finite, $V=H_{0}^{1}(\Omega), H=L^{2}(\Omega), V^{\prime}=H^{-1}(\Omega)$. Let $\left.\Omega_{T}=\Omega \times\right] 0, T[$, $\left.\Gamma_{T}=\Gamma \times\right] 0, T[$.

The following problem

$$
\frac{\partial u}{\partial t}-\Delta u=f, \quad u_{\Gamma_{T}}=0, \quad u(\cdot, 0)=u_{0} \text { in } \Omega
$$

has a unique solution using the bilinear form

$$
a(t ; u, v)=(\nabla u, \nabla v), \text { for } t \in[0, T],
$$

assuming $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), u_{0} \in L^{2}(\Omega)$.
2. If we consider $V=H^{1}(\Omega)$ instead, $H=L^{2}(\Omega)$, and if a satisfies

$$
a(t ; u, u)+\lambda|u|^{2} \geq \alpha\|u\|^{2}, t \in[0, T], u \in V,
$$

then using a as in Example 1, we formally obtain that the Cauchy-Neumann problem has a unique solution:

$$
\frac{\partial u}{\partial t}-\Delta u=f,\left.\quad \frac{\partial u}{\partial n}\right|_{\Gamma_{T}}=0, \quad u(\cdot, 0)=u_{0} \text { in } \Omega .
$$

3. If f is such that, for any $v \in H^{1}(\Omega)$:

$$
(f(t), v)=\int_{\Omega} f_{0} v d x+\int_{\Gamma} f_{1} v d \Gamma
$$

where $f_{0} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $f_{1} \in L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right)$, then $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and the corresponding problem is

$$
\frac{\partial u}{\partial t}-\triangle u=f,\left.\quad \frac{\partial u}{\partial n}\right|_{\Gamma_{T}}=f_{1}, \quad u(\cdot, 0)=u_{0} \text { in } \Omega .
$$

4. Mixed Dirichlet-Neumann BC can be considered.

[^0]: ${ }^{1}$ Following R. Dautray-J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Volume 5, Evolution Problems I, Springer-Verlag, 1992.

