Error estimates in Sobolev norms

If $\pi_h u \in P_r(\Omega)$ is the interpolant of u for triangulations T_h of Ω , satisfying the angle condition, then:

$$||u - \pi_h u||_{L^2(\Omega)} \le Ch^{r+1} |u|_{H^{r+1}(\Omega)},$$
$$|u - \pi_h u|_{H^1(\Omega)} \le Ch^r |u|_{H^{r+1}(\Omega)}.$$

If $V_h \subset H^2(\Omega)$, then we also have

$$|u - \pi_h u|_{H^2(\Omega)} \le Ch^{r-1} |u|_{H^{r+1}(\Omega)}.$$

(C depends only on β and r; it does not depend on h or u).

If $u \in H^s(\Omega)$ with $1 \le s \le r+1$, then

$$||u - \pi_h u||_{L^2(\Omega)} \le Ch^s |u|_{H^s(\Omega)},$$
$$||u - \pi_h u||_{H^1(\Omega)} \le Ch^{s-1} |u|_{H^s(\Omega)}.$$