269C, Vese

Useful results
Notations:
For $u \in H^{m}(\Omega)$, let

$$
\begin{gathered}
\|u\|_{H^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{2} d x\right)^{1 / 2}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}, \\
|u|_{H^{m}(\Omega)}=\left(\sum_{|\alpha|=m} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{2} d x\right)^{1 / 2}=\left(\sum_{|\alpha|=m}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
\end{gathered}
$$

Thm. (Poincaré's Inequality for $H_{0}^{1}(\Omega)$)
Let Ω be an open and bounded set in R^{n}. Then there is a positive constant $C=C(\Omega)$ such that, for all $u \in H_{0}^{1}(\Omega)$, we have Poincaré inequality:

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq C\|\nabla u\|_{L^{2}(\Omega)}^{2} .
$$

Corollary: Let $m>0$ be a positive integer, and let Ω be an open and bounded set in R^{n}. Then for $u \in H_{0}^{m}(\Omega)$, we have

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq C_{m} C^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2},
$$

$C_{m}=$ constant, and C is the constant from the previous theorem.
Corollary: (same assumptions on Ω). $|u|_{H^{m}(\Omega)}$ is a norm on $H_{0}^{m}(\Omega)$, equivalent to the norm $\|u\|_{H^{m}(\Omega)}$.

Thm. Let Ω be a bounded connected open set in R^{n}, with sufficiently regular boundary. Then we have for $u \in H^{1}(\Omega)$, such that $\int_{\Omega} u(x) d x=0$,

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq P(\Omega)\|\nabla u\|_{L^{2}(\Omega)}^{2} .
$$

More generally, we have for $u \in H^{1}(\Omega)$

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq P(\Omega)\|\nabla u\|_{L^{2}(\Omega)}^{2}+\frac{1}{|\Omega|}\left|\int_{\Omega} u(x) d x\right|^{2}
$$

Corollary: $|u|_{H^{1}(\Omega)}=\|\nabla u\|_{L^{2}(\Omega)}$ is a norm equivalent with the norm $\|u\|_{H^{1}(\Omega)}$ on the sub-space V_{0} (closed in $\left.H^{1}(\Omega)\right)$ defined by:

$$
V_{0}=\left\{u \in H^{1}(\Omega): \int_{\Omega} u(x) d x=0\right\}
$$

Corollary: Let Ω be a bounded connected open set in R^{n}, with sufficiently regular boundary Γ. Suppose $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ with length (area) of $\Gamma_{2}>0$. Let

$$
V_{\Gamma_{2}}=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Gamma_{2}}=0\right\}
$$

Then $V_{\Gamma_{2}}$ is a closed sub-space of $H^{1}(\Omega)$ and $|u|_{H^{1}(\Omega)}=\|\nabla u\|_{L^{2}(\Omega)}$ is a norm equivalent with the norm $\|u\|_{H^{1}(\Omega)}$ on the sub-space $V_{\Gamma_{2}}$.

Remark:

(i) Suppose that Ω is a bounded connected open set in R^{n} which is "very regular" ($\Gamma=\partial \Omega$ is a $n-1$ dimensional manifold of class C^{∞} and Ω locally on one side of Γ). For $u \in H^{1}(\Omega)$, let

$$
\|u\|_{H^{1}(\Omega), \Gamma}^{2}=\|\nabla u\|_{L^{2}(\Omega)}^{2}+\left.\int_{\Gamma}|u|_{\Gamma}\right|^{2} d \Gamma,
$$

where $\left.u\right|_{\Gamma}$ is the trace of u on Γ. Then there is a constant $C>0$ such that

$$
\|u\|_{H^{1}(\Omega)} \leq C\|u\|_{H^{1}(\Omega), \Gamma},
$$

for all $u \in H^{1}(\Omega)$. Therefore, $\|u\|_{H^{1}(\Omega), \Gamma}$ is a norm equivalent to $\|u\|_{H^{1}(\Omega)}$ on $H^{1}(\Omega)$.
(ii) Let $V_{\Gamma}=\left\{u \in H^{1}(\Omega), \int_{\Gamma} u d \Gamma=0\right\}$. Then V_{Γ} is a closed subspace of $H^{1}(\Omega)$, and $|u|_{H^{1}(\Omega)}$ is a norm equivalent to $\|u\|_{H^{1}(\Omega)}$ on V_{Γ}.

Corollary: Let Ω an open and bounded domain, with Lipschitz-continuous boundary $\Gamma=\partial \Omega$. Then there is a positive constant C such that

$$
\left\|\left.u\right|_{\Gamma}\right\|_{L^{2}(\Gamma)} \leq C\|u\|_{H^{1}(\Omega)} .
$$

Corollary: Over the space $H_{0}^{2}(\Omega),\|\Delta u\|_{L^{2}(\Omega)}$ is a norm, equivalent to $\|u\|_{H^{2}(\Omega)}$.

- For s a real number, then $u \in H^{s}\left(R^{n}\right)$ if

$$
\left(1+|\xi|^{2}\right)^{s / 2} \hat{u} \in L^{2}\left(R^{n}\right), \quad \xi \in R^{n}
$$

(with \hat{u} the Fourier transform of u).
We furnish $H^{s}\left(R^{n}\right)$ with the norm

$$
\|u\|_{s}=\left(\int_{R^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

For $s=m$ a non-negative integer, the space $H^{s}\left(R^{n}\right)$ coincides with the usual space $H^{m}\left(R^{n}\right)$.

- Thm: For $u \in H^{1}(\Omega)$, with $\Gamma=\partial \Omega$ of dimension $n-1$ and piecewise of class C^{1}, we can define $\left.u\right|_{\Gamma}$ (the trace of u on Γ) as an element of $H^{1 / 2}(\Gamma)$.

Thm: For every $u_{0} \in H^{1 / 2}(\Gamma)$, there is a $u \in H^{1}(\Omega)$ such that $\left.u\right|_{\Gamma}=u_{0}$.
Note: For such set Γ, we can give a definition of $H^{1 / 2}(\Gamma)$ (with the aid of local maps defining Γ, see Lions-Magenes, Necas, Dautray-Lions, etc).

We also have another version of the Trace theorem:
Thm: Assume Ω is bounded and $\Gamma=\partial \Omega$ of class C^{1}. Then there exists a bounded linear operator

$$
T: H^{1}(\Omega) \rightarrow L^{2}(\Omega)
$$

such that
(i) $T u=\left.u\right|_{\Gamma}$ if $u \in H^{1}(\Omega) \cap C(\bar{\Omega})$
(ii)

$$
\|T u\|_{L^{2}(\Gamma)} \leq C\|u\|_{H^{1}(\Omega)},
$$

for each $u \in H^{1}(\Omega)$, with constant C depending only on Ω.

