
269 C, Vese
Practice problems

[1] Write the differential equation

−4u+ u = f(x, y), (x, y) ∈ Ω

u = 1 (x, y) ∈ ∂Ω1

∂u

∂n
+ u = x (x, y) ∈ ∂Ω2,

where
Ω = {(x, y)| x2 + y2 < 1},
∂Ω1 = {(x, y)| x2 + y2 = 1, x ≤ 0},
∂Ω2 = {(x, y)| x2 + y2 = 1, x > 0},
in a weak variational form and describe a piecewise-linear Galerkin finite

element approximation for the problem. Analyze the assumptions of the
Lax-Milgram theorem.

[2] (a) Develop and describe the piecewise linear Galerkin finite element
approximation of,

−∇ · a(x)∇u+ b(x)u = f(x), x = (x1, x2) ∈ Ω,

u = 2, x ∈ ∂Ω1,
∂u

∂x1

+
∂u

∂x2

+ u = 2, x ∈ ∂Ω2,

where
Ω = {x| x1 > 0, x2 > 0, x1 + x2 < 1},
∂Ω1 = {x| x1 = 0, 0 ≤ x2 ≤ 1} ∪ {x| x2 = 0, 0 ≤ x1 ≤ 1},
∂Ω2 = {x| x1 > 0, x2 > 0, x1 + x2 = 1},
0 < a ≤ a(x) ≤ A, 0 < b ≤ b(x) ≤ B.
(b) Justify the approximation by analyzing the appropriate bilinear and

linear forms. Give a convergence estimate and quote the appropriate theo-
rems for convergence.

[3] Consider the elliptic boundary value problem

− d

dx

[
(1 + x)

du

dx

]
+

u

1 + x
=

2

1 + x
, 0 < x < 1,
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u(0) = 0, u(1) = 1.

(a) Give a weak formulation for the problem.
(b) Verify the assumptions of the Lax-Milgram lemma.
(c) Setup a finite element approximation for this problem.
Note an alternative approach: let w(x) = u(x)−x, then w(0) = w(1) = 0.

[4] Develop and describe the piecewise-linear Galerkin finite element ap-
proximation of

−4u+ u = f(x, y), (x, y) ∈ T,
u = g1(x), (x, y) ∈ T1,

u = g2(y), (x, y) ∈ T2,

∂u

∂n
= h(x, y), (x, y) ∈ T3,

where

T = {(x, y)| x > 0, y > 0, x+ y < 1}
T1 = {(x, y)| y = 0, 0 < x < 1}
T2 = {(x, y)| x = 0, 0 < y < 1}
T3 = {(x, y)| x > 0, y > 0, x+ y = 1}.

Justify your approximation by analyzing the appropriate bilinear and linear
forms. Give a weak formulation of the problem. Give a convergence estimate
and quote the appropriate theorems for convergence.

[5] Develop and describe the piecewise linear Galerkin finite element ap-
proximation of


−4u+ b(x)u = f(x), x = (x1, x2) ∈ Ω

u = 2, x ∈ ∂Ω1
∂u
∂x1

+ ∂u
∂x2

+ u = 2, x ∈ ∂Ω2,

where

Ω = {x|x1 > 0, x2 > 0, x1 + x2 < 1}
∂Ω1 = {x|x1 = 0, 0 ≤ x2 ≤ 1} ∪ {x|x2 = 0, 0 ≤ x1 ≤ 1}
∂Ω2 = {x|x1 > 0, x2 > 0, x1 + x2 = 1}
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and
0 < b ≤ b(x) ≤ B.

Justify your approximation by analyzing the appropriate bilinear and
linear forms. Give a weak formulation of the problem. Give a convergence
estimate and quote the appropriate theorems for convergence

[6] Consider the following problem in a domain Ω ⊂ R2, with Γ = ∂Ω:

−4u+ β1
∂u

∂x1

+ β2
∂u

∂x2

+ u = f in Ω,

u = 0 on Γ,

where the βi are constants.
(a) Choose an appropriate space of test functions V , and give a weak

formulation of the problem.
(b) For any v ∈ V , show that∫

Ω

(
β1
∂v

∂x1

v + β2
∂v

∂x2

v
)
dx = 0.

(c) By analyzing the linear and bilinear forms, show that the weak for-
mulation has a unique solution.

(d) Set up a convergent finite element approximation and discuss the
linear system thus obtained.
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Additional practice problems
(some problems were given at past numerical analysis qualifying exams)

[1] Let n ≥ 2 be an integer and Ω ⊂ Rn a bounded domain with Lipschitz
boundary Γ = ∂Ω. Let aij ∈ L∞(Ω) for all i, j = 1, ..., n, and assume that
there exists a constant λ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2, for all x ∈ Ω, ξ ∈ Rn.

Let b ∈ L∞(Ω) with b ≥ 0 a.e. in Ω and f ∈ L2(Ω). Moreover, let Γ0 ⊂ Γ and
Γ1 = Γ \ Γ0, be both dS-measurable subsets of Γ with positive dS-measures.

Consider the problem

−∑n
i,j=1 ∂xj

(aij∂xi
u) + bu = f in Ω,

(P ) u = 0 on Γ0,∑n
i,j=1 aij(∂xiu)nj = g on Γ1,

where ~n = (n1, ..., nn) is the unit exterior normal along the boundary ∂Ω.
(a) Give a weak variational formulation (V ) of the problem, and show

that this weak problem has a unique solution.
(b) If in addition aij ∈ W 1,∞(Ω) (i, j = 1, ..., n) and u ∈ C2(Ω), show

that (V ) implies (P ).
(c) Setup a convergent finite element formulation of the problem using P1

elements (show the main properties of the linear system, show an abstract
stability estimate, and give a rate of convergence).

[2] The following elliptic problem is approximated by the finite element
method,

−∇ ·
(
a(x)∇u(x)

)
= f(x), x ∈ Ω ⊂ R2,

u(x) = u0, x ∈ Γ1,

∂u(x)

∂x1

+ u(x) = 0, x ∈ Γ2,

∂u(x)

∂x2

= 0, x ∈ Γ3,

where

Ω = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1},
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Γ1 = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ 1},
Γ2 = {(x1, x2) : x1 = 1, 0 ≤ x2 ≤ 1},
Γ3 = {(x1, x2) : 0 < x1 < 1, x2 = 0, 1},

0 < A ≤ a(x) ≤ B, a.e. in Ω, f ∈ L2(Ω),

and u0|Γ1 is the trace of a function u0 ∈ H1(Ω).
(a) Determine an appropriate weak variational formulation of the prob-

lem.
(b) Prove conditions on the corresponding linear and bilinear forms which

are needed for existence and uniqueness of the solution.
(c) Describe a FEM using P1 elements, and a set of basis functions such

that the linear system from the finite element approximation is sparse and
of band structure. Discuss the linear system thus obtained, and give a rate
of convergence.

[3] Let A be a 2×2 symmetric matrix (can have space-dependent entries).

Let ∇V =

(
vx
vy

)
, Ω be the unit square.

(a) Give conditions on A and the space of functions S, so that the problem

min
v∈S

{1

2

∫
Ω

(∇V )TA(∇V )dxdy −
∫

Ω
fvdxdy

}
,

has a minimum for f ∈ L2(Ω), where v = 0 on the boundary of Ω (note, T
denotes transpose).

(b) For those A, setup a finite element method that converges and obtain
the rate.

(c) Justify your statements.

[4] Consider the differential equation

uxx + 2uyy − 3ux − 4u = f(x, y), (x, y) ∈ Ω,

∂u

∂~n
= g(x, y), (x, y) ∈ ∂Ω,

where Ω is the unit square.
(a) Derive a Galerkin finite element approximation of the problem.
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(b) Obtain the conditions on the appropriate bilinear and linear forms
that guarantee convergence of the finite element method.

(c) Determine the diagonal elements in the element stiffness matrix for
P1(K) elements. The triangle K has the vertices (0, 0), (0, h) and (h, 0).

[5] Consider the Neumann problem

(A) − (uxx + uyy) = f(x, y), −1 < x < 1, −1 < y < 1,

with

(B)
∂u

∂~n
= g

(~n is the outwards unit normal) and the condition

(C)
∫
|x|<1,|y|<1

u(x, y)dxdy = 0.

(a) Why do we need condition (C) ?
Now replace (A) by

(A′) u− (uxx + uyy) = f

and keep condition (B).
(b) Do we still need condition (C) ? Why or why not ?
(c) Set up a finite element method that converges for the problem (A’),

(B). Justify your answers.

[6] Consider the following partial differential equations

− ∂

∂x

(
a(x, y)

∂u

∂x

)
− ∂

∂y

(
b(x, y)

∂u

∂y

)
+ c(x, y)u = f(x, y), (x, y) ∈ Ω

u = 1, (x, y) ∈ ∂Ω1

∂u

∂y
= 0, (x, y) ∈ ∂Ω2

where Ω = [0, 1]2, ∂Ω1 = {(x, y), |x| = 1, |y| ≤ 1}, ∂Ω2 = {(x, y), |y| =
1, |x| < 1}.

(a) Set up a finite element method based on a weak form of the problem
above.

(b) Give conditions on a, b and c such that the method will converge.
Give the convergence estimate and motivate your answers.
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[7] Consider the evolution problem

∂u

∂t
= ∇ ·

(
a(x)∇u

)
, x ∈ ∂Ω ⊂ R2, t > 0, a ≥ a0 > 0

∂u

∂~n
+ bu = f(x), x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω.

(a) Give a weak formulation of the problem.
(b) Describe how to use the Galerkin method together with Crank-Nicolson

discretization in time to obtaina numerical method based on piecewise-linear
elements.

(c) Show that the matrices that need to be inverted at each time step are
nonsingular for b = 0.

[8] (a) Derive a weak variational formulation of the convection-diffusion
prolem,

−4u+ ~a · ∇u+ bu = f(x, y) 0 < x < 1, 0 < y < 1

u = c(x, y), x = 0, 1, 0 ≤ y ≤ 1

∂u

∂~n
= d(x, y) 0 < x < 1, y = 0, 1

where ~a, b, c, d, and f are smooth functions.
(b) Under what assumptions on the coefficients ~a, b, we obtain a conver-

gent finite element approximation ?

[9] Let Ω, Ωi, i = 1, 2 be bounded Lipschitz domains in R2, such that
Ωi ⊂ Ω (i = 1, 2), Ω = Ω1 ∪ Ω2, and each Γi := ∂Ωi ∩ ∂Ω has a positive
dS-measure. Denote S = ∂Ω1 ∩ ∂Ω2. Consider the interface boundary value
problem

−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,

[u] = [a∂νu] = 0 on S,

where

a(x) =

{
a1 if x ∈ Ω1

a2 if x ∈ Ω2
,
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and a1, a2 are two distinct, positive, real numbers, f ∈ L2(Ω), ν is the unit
exterior normal of ∂Ω2, and [·] denotes the jump across the interface S.

(a) Find the weak formulation of the boundary value problem.
(b) Prove that the problem in weak formulation has a unique solution.
(c) Prove that the weak solution, if it is smooth enough, solves the bound-

ary value problem (for instance, assume u weak solution and u ∈ C2(Ωi),
i = 1, 2).

[10] Consider the Newmann problem

−4u = 0 in Ω,

∂u

∂~n
= g on ∂Ω,

where Ω is sufficiently smooth and g ∈ L2(∂Ω).
(a) Give a weak variational formulation of the problem.
(b) Give a condition on g necessary to guarantee the existence of a solution

to this problem.
(c) Give a condition on u necessary to guarantee the existence and unique-

ness of a solution to this problem.
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