Evolution problems of first order in time

1.1 Function spaces
We are given a pair of real, separable Hilbert spaces \(V, H \); we denote by \((,\)) the scalar product, \(||\cdot||\) the norm in \(V \)
\langle,\rangle the scalar product, \(||\cdot|||\) the norm in \(H \).
We suppose \(V \) is dense in \(H \) and we identify \(H \) with its dual \(H' \). We also denote the duality between \(V' \) and \(V \) by \((,\).

1.2 The bilinear form \(a(t; u, v), t \in [0, T] \)
For each \(t \in [0, T] \), we are given a continuous bilinear form over \(V \times V \) and we make the hypothesis:

(3.3) For every \(u, v \in V \), the function \(t \to a(t; u, v) \) is measurable and there is a constant \(M = M(T) > 0 \) (independent of \(t \in [0, T], u, v \)) such that

\[|a(t; u, v)| \leq M \|u\|\|v\| \]

for all \(u, v \in V \).

Def. Let \(a, b \in \mathbb{R} \). Then

\[W(V) = W(a, b; V, V') = \{u; u \in L^2(a, b; V), u' \in L^2(a, b; V')\} \]

Proposition. This is a Hilbert space equipped with the norm

\[\|u\|_W = (\|u\|_{L^2(a, b; V)}^2 + \|u'\|_{L^2(a, b; V')}^2)^{1/2} = \left(\int_a^b (\|u(t)\|_V^2 + \|u'(t)\|_{V'}^2) dt \right)^{1/2} \]

We also assume (3.25) \(a(t; u, u) \geq \alpha \|u\|_V^2 \), for any \(t \in [0, T], u \in V \), and \(u_0 \in H, f \in L^2(V') \).

Evolution Problem (P) Find \(u \) satisfying \(u \in W(V), \)

\[\frac{d}{dt}(u(\cdot), v) + a(\cdot; u(\cdot), v) = (f(\cdot), v) \]
in the sense of distributions \(D'(\mathbb{R}) \) for all \(v \in V, u(0) = u_0 \).

Remark. We have

\[\frac{d}{dt}(u(\cdot), v) = \left(\frac{d}{dt}u(\cdot), v \right), \]

for any \(v \in V \).

Theorem 1. Then the solution of problem (P), if it exists, is unique.

Proof. Let \(u_1, u_2 \) be two distinct solutions of (P), then \(w = u_1 - u_2 \) satisfies \(w \in W(V) \) and

\[\left(\frac{dw}{dt}(\cdot), v \right) + a(\cdot; w(\cdot), v) = 0, \]

for any \(v \in V \), with \(w(0) = 0 \). Then by replacing \(v \) by \(w(t) \) and integrating from 0 to \(t \):

\[
\frac{1}{2} |w(t)|^2 + \int_0^t a(s; w(s), w(s)) \, ds = 0.
\]

Since \(a(\cdot; u, v) \) is \(V - elliptic \), we have then

\[
\frac{1}{2} |w(t)|^2 < 0 \implies w(t) = 0 \text{ for all } t \in [0, T].
\]

Theorem 2. There exists a solution \(u \) to problem (P), and \(u \in W(0, T; V, V') \).

Examples

1. Let \(\Omega \) be an open and bounded subset of \(\mathbb{R}^n \), with boundary \(\Gamma \), \(T \) finite, \(V = H^1_0(\Omega), H = L^2(\Omega), V' = H^{-1}(\Omega) \). Let \(\Omega_T = \Omega \times [0, T[, \Gamma_T = \Gamma \times [0, T[\).

 The following problem

 \[\frac{\partial u}{\partial t} - \Delta u = f, \quad u_{|\Gamma_T} = 0, \quad u(\cdot, 0) = u_0 \text{ in } \Omega \]

 has a unique solution using the bilinear form

 \[a(t; u, v) = (\nabla u, \nabla v), \quad \text{for } t \in [0, T], \]

 assuming \(f \in L^2(0, T; H^{-1}(\Omega)) \), \(u_0 \in L^2(\Omega) \).

2. If we consider \(V = H^1(\Omega) \) instead, \(H = L^2(\Omega) \), and if \(a \) satisfies

 \[a(t; u, u) + \lambda |u|^2 \geq \alpha \|u\|^2, \quad t \in [0, T], \quad u \in V, \]

 then using \(a \) as in Example 1, we formally obtain that the Cauchy-Neumann problem has a unique solution:

 \[\frac{\partial u}{\partial t} - \Delta u = f, \quad \frac{\partial u}{\partial n}_{|\Gamma_T} = f_1, \quad u(\cdot, 0) = u_0 \text{ in } \Omega. \]

3. If \(f \) is such that, for any \(v \in H^1(\Omega) \):

 \[(f(t), v) = \int_{\Omega} f_0 v dx + \int_{\Gamma} f_1 v d\Gamma, \]

 where \(f_0 \in L^2(0, T; L^2(\Omega)) \) and \(f_1 \in L^2(0, T; H^{-1/2}(\Gamma)) \), then \(f \in L^2(0, T; V') \) and the corresponding problem is

 \[\frac{\partial u}{\partial t} - \Delta u = f, \quad \frac{\partial u}{\partial n}_{|\Gamma_T} = f_1, \quad u(\cdot, 0) = u_0 \text{ in } \Omega. \]

4. Mixed Dirichlet-Neumann BC can be considered.