HW #4, 269C, Vese Due Friday, May 26

NOTE: There will be no class on Monday, May 15 and Wednesday May 17. The next lecture is on Friday, May 19. We will reschedule these lectures at a later time.

1. Let K be a tetrahedron with vertices a^i , i = 1, ..., 4, and let a^{ij} denote the midpoint on the straight line $a^i a^j$, i < j. Show that a function $v \in P_2(K)$ is uniquely determined by the degrees of freedom: $v(a^i)$, $v(a^{ij})$, i, j = 1, ..., 4, i < j. Show that the corresponding finite element space V_h satisfies $V_h \subset C^0(\Omega)$.

2. Let K be a triangle in two dimensions, with vertices a^i , i = 1, 2, 3. Suppose that $v \in P_r(K)$ and that v vanishes on the side a^2a^3 . Prove that v has the form

$$v(x) = \lambda_1(x)w_{r-1}(x), \quad x \in K,$$

where $w_{r-1} \in P_{r-1}(K)$. For simplicity, you may want to assume $r \leq 3$ and use the local basis functions $\lambda_i(x)$ of $P_1(K)$.

(the proof given in class was wrong).

3. Let K be a triangle with vertices a^i , i = 1, 2, 3, and let a^{ij} , i < j, denote the midpoints of the sides of K. Let a^{123} denote the center of gravity of K. Prove that $v \in P_4(K)$ is uniquely determined by the following degrees of freedom

$$\begin{aligned} &v(a^{i}), \\ &\frac{\partial v}{\partial x_{j}}(a^{i}), \ i = 1, 2, 3, \ j = 1, 2, \\ &v(a^{ij}), \ i, j = 1, 2, 3, \ i < j, \\ &v(a^{123}), \ \frac{\partial v}{\partial x_{i}}(a^{123}), j = 1, 2, \end{aligned}$$

Also show that the functions in the corresponding finite element V_h are continuous.