269C, Vese Useful results

Notations:

For $u \in H^m(\Omega)$, let

$$||u||_{H^m(\Omega)} = \Big(\sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha} u(x)|^2 dx\Big)^{1/2} = \Big(\sum_{|\alpha| \le m} ||D^{\alpha} u||_{L^2(\Omega)}^2\Big)^{1/2},$$

$$|u|_{H^m(\Omega)} = \Big(\sum_{|\alpha|=m} \int_{\Omega} |D^{\alpha}u(x)|^2 dx\Big)^{1/2} = \Big(\sum_{|\alpha|=m} ||D^{\alpha}u||_{L^2(\Omega)}^2\Big)^{1/2}.$$

Thm. (Poincaré's Inequality for $H_0^1(\Omega)$)

Let Ω be an open and bounded set in \mathbb{R}^n . Then there is a positive constant $C = C(\Omega)$ such that, for all $u \in H_0^1(\Omega)$, we have Poincaré inequality:

$$||u||_{L^2(\Omega)}^2 \le C||\nabla u||_{L^2(\Omega)}^2$$

Corollary: Let m > 0 be a positive integer, and let Ω be an open and bounded set in \mathbb{R}^n . Then for $u \in H_0^m(\Omega)$, we have

$$||u||_{L^2(\Omega)}^2 \le C_m C^m \sum_{|\alpha|=m} ||D^{\alpha}u||_{L^2(\Omega)}^2,$$

 C_m =constant, and C is the constant from the previous theorem.

Corollary: (same assumptions on Ω). $|u|_{H^m(\Omega)}$ is a norm on $H_0^m(\Omega)$, equivalent to the norm $||u||_{H^m(\Omega)}$.

Thm. Let Ω be a bounded connected open set in \mathbb{R}^n , with sufficiently regular boundary. Then we have for $u \in H^1(\Omega)$, such that $\int_{\Omega} u(x) dx = 0$,

$$|u|_{L^2(\Omega)}^2 \le P(\Omega) \|\nabla u\|_{L^2(\Omega)}^2$$
.

More generally, we have for $u \in H^1(\Omega)$

$$|u|_{L^{2}(\Omega)}^{2} \le P(\Omega) \|\nabla u\|_{L^{2}(\Omega)}^{2} + \frac{1}{|\Omega|} \int_{\Omega} u(x) dx \Big|^{2}.$$

Corollary: $|u|_{H^1(\Omega)} = ||\nabla u||_{L^2(\Omega)}$ is a norm equivalent with the norm $||u||_{H^1(\Omega)}$ on the sub-space V_0 (closed in $H^1(\Omega)$) defined by:

$$V_0 = \{ u \in H^1(\Omega) : \int_{\Omega} u(x) dx = 0 \}.$$

Corollary: Let Ω be a bounded connected open set in \mathbb{R}^n , with sufficiently regular boundary Γ . Suppose $\Gamma = \Gamma_1 \cup \Gamma_2$ with length (area) of $\Gamma_2 > 0$. Let

$$V_{\Gamma_2} = \{ u \in H^1(\Omega) : u|_{\Gamma_2} = 0 \}.$$

Then V_{Γ_2} is a closed sub-space of $H^1(\Omega)$ and $|u|_{H^1(\Omega)} = ||\nabla u||_{L^2(\Omega)}$ is a norm equivalent with the norm $||u||_{H^1(\Omega)}$ on the sub-space V_{Γ_2} .

Remark:

(i) Suppose that Ω is a bounded connected open set in \mathbb{R}^n which is "very regular" ($\Gamma = \partial \Omega$ is a n-1 dimensional manifold of class C^{∞} and Ω locally on one side of Γ). For $u \in H^1(\Omega)$, let

$$||u||_{H^1(\Omega),\Gamma}^2 = ||\nabla u||_{L^2(\Omega)}^2 + \int_{\Gamma} |u|_{\Gamma}|^2 d\Gamma,$$

where $u|_{\Gamma}$ is the trace of u on Γ . Then there is a constant C>0 such that

$$||u||_{H^1(\Omega)} \le C||u||_{H^1(\Omega),\Gamma},$$

for all $u \in H^1(\Omega)$. Therefore, $||u||_{H^1(\Omega),\Gamma}$ is a norm equivalent to $||u||_{H^1(\Omega)}$ on $H^1(\Omega)$.

(ii) Let $V_{\Gamma} = \{ u \in H^1(\Omega), \int_{\Gamma} u d\Gamma = 0 \}$. Then V_{Γ} is a closed subspace of $H^1(\Omega)$, and $|u|_{H^1(\Omega)}$ is a norm equivalent to $||u||_{H^1(\Omega)}$ on V_{Γ} .

Corollary: Let Ω an open and bounded domain, with Lipschitz-continuous boundary $\Gamma = \partial \Omega$. Then there is a positive constant C such that

$$||u|_{\Gamma}||_{L^2(\Gamma)} \le C||u||_{H^1(\Omega)}.$$

Corollary: Over the space $H_0^2(\Omega)$, $\|\triangle u\|_{L^2(\Omega)}$ is a norm, equivalent to $\|u\|_{H^2(\Omega)}$.