## HW #4, 269C, Vese

Due Friday, May 28, 2004

- 1. Let K be a tetrahedron with vertices  $a^i$ , i=1,...,4, and let  $a^{ij}$  denote the midpoint on the straight line  $a^ia^j$ , i< j. Show that a function  $v\in P_2(K)$  is uniquely determined by the degrees of freedom:  $v(a^i)$ ,  $v(a^{ij})$ , i,j=1,...,4, i< j. Show that the corresponding finite element space  $V_h$  satisfies  $V_h\subset C^0(\Omega)$ .
- **2.** Let K be a triangle with vertices  $a^i$ , i = 1, 2, 3. Suppose that  $v \in P_r(K)$  and that v vanishes on the side  $a^2a^3$ . Prove that v has the form

$$v(x) = \lambda_1(x)w_{r-1}(x), \quad x \in K,$$

where  $w_{r-1} \in P_{r-1}(K)$ .

**3.** Let K be a triangle with vertices  $a^i$ , i = 1, 2, 3, and let  $a^{ij}$ , i < j, denote the midpoints of the sides of K. Let  $a^{123}$  denote the center of gravity of K. Prove that  $v \in P_4(K)$  is uniquely determined by the following degrees of freedom

$$v(a^{i}),$$

$$\frac{\partial v}{\partial x_{j}}(a^{i}), i = 1, 2, 3, j = 1, 2,$$

$$v(a^{ij}), i, j = 1, 2, 3, i < j,$$

$$v(a^{123}), \frac{\partial v}{\partial x_{j}}(a^{123}), j = 1, 2,$$

Also show that the functions in the corresponding finite element  $V_h$  are continuous.