Review and practice problems for the midterm

- [1] Consider the one-way wave equation $u_t + u_x = 0$ for t > 0 and $x \in R$, with the initial condition $u(x,0) = u_0(x)$.
 - (a) Give the exact solution of the equation.
- (b) Show that the leapfrog scheme with $\lambda=\frac{k}{h}=1$ applied to this equation gives the exact solution (let v_m^0 and v_m^1 be given by the exact solution at t=0and t = k, for all $m \in \mathbb{Z}$).
 - [2] Consider the system of partial differential equations

(1)
$$\begin{cases} u_t + u_x + v_x = 0, & u(x,0) = u_0(x), \\ v_t + u_x - v_x = 0, & v(x,0) = v_0(x). \end{cases}$$

- (a) Write the system in matrix form $U_t + AU_x = \vec{0}$, with $U(x,t) = \vec{0}$ $\begin{pmatrix} u(x,t) \\ v(x,t) \end{pmatrix}$, and find the matrix A.
 - (b) Is this a hyperbolic system? Explain.
- (c) Reduce, if possible, the system (1) to a set of independent scalar hyperbolic equations.
 - (d) Obtain the exact solution of the system (1).
- (e) Let $V_m^n \approx \begin{pmatrix} u(x_m, t_n) \\ v(x_m, t_n) \end{pmatrix}$. Consider the FTCS scheme applied to the

(2)
$$\frac{1}{k}(V_m^{n+1} - V_m^n) + \frac{1}{2h}A(V_{m+1}^n - V_{m-1}^n) = \vec{0}.$$

Find the nonsingular amplification matrix G for this scheme by substituting $V_m^n = G^n e^{im\theta}$ into the difference equation (2). (f) Show the following general statement:

Assume that A is a diagonalizable matrix (i.e. there is a nonsingular matrix P such that $PAP^{-1} = \Lambda_A$ is diagonal). If $G = \Phi(A)$, where $\Phi(A) =$ $c_0I + c_1A + c_2A^2$ is a polynomial of A, whith I the identity matrix, and c_0 , c_1 , c_2 constants, then G is also diagonalizable, with the same matrix P.

Moreover, the diagonal matrix Λ_G of eigenvalues of G can easily be obtained function of Λ_A (show that $\Lambda_G = \Phi(\Lambda_A)$).

Note 1. The above statement is true for any polynomial or rational function Φ of A (you do not have to prove Note 1).

- Note 2. Assume that A and G are as in statement (f), with A a constant matrix, and G the amplification matrix. Then the von Neumann condition is necessary and sufficient for stability (hint: write $G = P^{-1}\Lambda_G P$, $||G^n||_2 = ||(P^{-1}\Lambda_G P)^n||_2 \le ||P^{-1}||_2 ||P||_2 ||\Lambda_G^n||_2$, and use the general formula $||M||_2 = \rho(M^*M)$, where M is an $n \times n$ matrix and $\rho(M^*M)$ is the spectral radius of M^*M).
- (g) Apply the previous statements to the particular matrices A and G from (a)-(e) and deduce that the scheme (2) is unstable if $\lambda = \frac{k}{h}$ is constant.
- **Def.** (order of accuracy for homogeneous equations) If $P_{k,h}\phi = O(h^r)$ for each formal solution to $P\phi = 0$, then the scheme is accurate of order r, provided that $k = \Lambda(h)$.
 - [3] Consider the system of equations

$$\left(\begin{array}{c} u \\ v \end{array}\right)_t = A \left(\begin{array}{c} u \\ v \end{array}\right)_x; \quad A = \left(\begin{array}{cc} 1 & \alpha \\ 0 & 1 \end{array}\right),$$

which is approximated by the Lax-Friedrichs scheme, $V_j^n \approx (u(x_j, t_n), v(x_j, t_n)),$

$$V_j^{n+1} = \frac{1}{2}(V_{j+1}^n + V_{j-1}^n) + \frac{\triangle t}{2\triangle x}A(V_{j+1}^n - V_{j-1}^n).$$

Determine the order of accuracy of this scheme and its stability properties depending on whether $\alpha \neq 0$ or $\alpha = 0$.