269B, Winter 2005, Vese

HW #8, due on Monday, March 14 or Wednesday, March 16 (no late homework accepted)

REMINDER:

FINAL EXAM on Wednesday, March 16, 2-5pm, MS 5138.

[1] Consider the system of partial differential equations

(1)
$$\begin{cases} u_t + u_x + v_x = 0, & u(x,0) = u_0(x), \\ v_t + u_x - v_x = 0, & v(x,0) = v_0(x). \end{cases}$$

- (a) Write the system in matrix form $U_t + AU_x = \vec{0}$, with $U(x,t) = \begin{pmatrix} u(x,t) \\ v(x,t) \end{pmatrix}$, and find the matrix A.
 - (b) Is this a hyperbolic system? Explain.
- (c) Reduce, if possible, the system (1) to a set of independent scalar hyperbolic equations.
 - (d) Obtain the exact solution of the system (1).
- (e) Let $U_j^n \approx \begin{pmatrix} u(x_j, t_n) \\ v(x_j, t_n) \end{pmatrix}$. Consider the FTCS scheme applied to the system (1) in matrix form:

(2)
$$\frac{1}{\Delta t}(U_j^{n+1} - U_j^n) + \frac{1}{2h}A(U_{j+1}^n - U_{j-1}^n) = \vec{0}.$$

Find the nonsingular amplification matrix G for this scheme by substituting $U_j^n \approx G^n e^{ij\theta}$ into the difference equation (2).

- (f) Analyze the stability of the scheme, using the amplification matrix G (Hint: note that if G = P(A), with P a polynomial or a rational function, then the eigenvalues g_i of G are given by $g_i = P(a_i)$, where a_i are the eigenvalues of A, and both matrices are diagonalizable by the same matrix).
- [2] Consider the scalar hyperbolic equation $u_t + au_x + bu_y = 0$ in two space dimensions. Consider the discretizations $(x_l, y_m, t^n) = (l \triangle x, m \triangle y, n \triangle t)$, and $u_{l,m}^n \approx u(x_l, y_m, t^n)$.

Show that the scheme

$$\frac{u_{l,m}^{n+1} - \frac{1}{4}(u_{l+1,m+1}^n + u_{l-1,m+1}^n + u_{l+1,m-1}^n + u_{l-1,m-1}^n)}{k} + a\Delta_0^x u_{l,m}^n + b\Delta_0^y u_{l,m}^n = 0$$

for the equation $u_t + au_x + bu_y = 0$, with $\triangle x = \triangle y = h$, is stable if and only if $(|a| + |b|)\lambda \le 1$.

Here Δ_0^x , Δ_0^y are the usual second order central approximations to u_x and u_y . (HINT: substitute in the difference scheme $u_{l,m}^n$ by $g^n e^{il\theta_1} e^{im\theta_2}$, where $g = g(\theta_1, \theta_2)$ if $\lambda = \Delta t/h$ is constant, with $\theta_1 = h\xi_1$ and $\theta_2 = h\xi_2$, (ξ_1, ξ_2) being the variables in the frequency domain).

[3]

(a) Consider the diffusion equation in one space dimension $u_t = bu_{xx} + f(x,t)$, b > 0. Show that the Du Fort-Frankel scheme, which is a modification of the leapfrog scheme,

$$\frac{u_j^{n+1} - u_j^{n-1}}{2\Delta t} = b \frac{u_{j+1}^n - (u_j^{n+1} + u_j^{n-1}) + u_{j-1}^n}{h^2} + f_j^n$$

has the order of accuracy given by $O(h^2) + O(\Delta t^2) + O(\frac{\Delta t^2}{h^2})$, and also that the scheme is unconditionally stable.

(b) Show that the two-dimensional Du Fort-Frankel scheme for the equation $u_t = b(u_{xx} + u_{yy}) + f(x, y, t)$ given by

$$\frac{u_{l,m}^{n+1} - u_{l,m}^{n-1}}{2\Delta t} = b \frac{u_{l+1,m}^{n} + u_{l-1,m}^{n} + u_{l,m+1}^{n} + u_{l,m-1}^{n} - 2(u_{l,m}^{n+1} + u_{l,m}^{n-1})}{h^{2}} + f_{l,m}^{n},$$

where $\triangle x = \triangle y = h$, is unconditionally stable.

[4] Consider the equation $u_t + a(x,t)u_x = 0$, where a(x,t) may change sign. We know that when a = constant, if a > 0 the initial profile propagates to the right, while if a < 0 it propagates to the left. Therefore, if a > 0 the information from the left is propagated to the right, and vice-versa. Moreover, if a > 0, then the FTFS scheme is unstable, while if a < 0, then the FTBS scheme is unstable.

Based on these remarks, propose an "upwind" scheme for $u_t + a(x, t)u_x = 0$, of first order, that combines FTFS and FTBS. Give a sufficient condition of stability for the scheme with variable coefficients.