269B, Winter 2005, Vese HW #6, due on Friday, Febryary 25

[1] Consider the system

$$\begin{cases} u_t + 2u_x + v_x = 0 \\ v_t + u_x + 2v_x = 0 \end{cases},$$

with initial data $u_0(x) = u(x,0) = \begin{cases} 1 \text{ if } |x| \leq 1 \\ 0 \text{ if } |x| > 1 \end{cases}$, $v(x,0) = v_0(x) = 0$.

- (a) Write the system in matrix-vector form.
- (b) Find the exact solution of the system. Hint: transform the system into a set of two uncoupled one-way wave equations.
- [2] Consider the one-way wave equation $u_t + au_x = 0$ for t > 0 and $x \in R$, with the initial condition $u(x, 0) = u_0(x)$.
 - (a) Give the exact solution of the equation.
- (b) Show that the leapfrog scheme (C-T,C-S) is consistent with the one-way wave equation $u_t + au_x = 0$. Find the order of the scheme.
- (c) Show that the leapfrog scheme with $\lambda = \frac{\Delta t}{h} = 1$ applied to $u_t + u_x = 0$ gives the exact solution (let u_j^0 and u_j^1 be given by the exact solution at t = 0 and $t = \Delta t$, for all $j \in \mathbb{Z}$).
- [3] Consider the modified Lax-Friedrichs scheme for the one-way wave equation $u_t + au_x = f(x, t)$,

$$u_j^{n+1} = \frac{1}{2}(u_{j+1}^n + u_{j-1}^n) - \frac{a\lambda}{1 + (a\lambda)^2}(u_{j+1}^n - u_{j-1}^n) + \triangle t f_j^n.$$

- (a) Analize the consistency of the scheme.
- (b) Show that this explict scheme is stable for all values of λ . Discuss the relation of this explicit and unconditionally stable scheme with the Courant-Friedrichs-Lewy Theorem.

CFL Thm: There are no explicit, unconditionally stable, consistent finite difference schemes for hyperbolic systems of partial differential equations.

[4] Show that the scheme forward-time central-space for $u_t + au_x = bu_{xx}$ satisfies the condition $|g| \leq 1$ if and only if $\triangle t \leq 2b/a^2$.