How to find the location of roots of amplification polynomials: Schur and von Neumann polynomials

Let $\phi(z)$ be a polynomial of degree d:

$$
\phi(z) = a_d z^d + \ldots + a_0 = \sum_{i=0}^{d} a_i z^i.
$$

We say that ϕ is of exact degree d if a_d is not zero.

Definition 1. The polynomial ϕ is a Schur polynomial if all its roots, r_ν, satisfy

$$ |r_\nu| < 1. $$

Definition 2. The polynomial ϕ is a von Neumann polynomial if all its roots, r_ν, satisfy

$$ |r_\nu| \leq 1. $$

Definition 3. The polynomial ϕ is a simple von Neumann polynomial if ϕ is a von Neumann polynomial and its roots on the unit circle are simple roots.

Definition 4. The polynomial ϕ is a conservative polynomial if all its roots lie on the unit circle, i.e. $|r_\nu| = 1$ for all roots r_ν.

For a polynomial ϕ, we define a polynomial ϕ^* by

$$
\phi^*(z) = \sum_{l=0}^{d} \bar{a}_{d-l} z^l,
$$

where the bar on the coefficients of ϕ denotes complex conjugate. Note that

$$
\phi^*(z) = \overline{\phi(z-1)} z^d.
$$

Finally, for a polynomial ϕ_0 we define recursively the polynomial

$$
\phi_{j+1}(z) = \frac{\phi_j^*(0)\phi_j(z) - \phi_j(0)\phi_j^*(z)}{z}.
$$

It is easy to see that the degree of ϕ_{j+1} is less than that of ϕ_j.

Theorem 1. ϕ_j is a Schur polynomial of exact degree d if and only if ϕ_{j+1} is a Schur polynomial of exact degree $d - 1$ and $|\phi_j(0)| < |\phi_j^*(0)|$.

1
Theorem 2. \(\phi_j \) is a simple von Neumann polynomial if and only if either \(|\phi_j(0)| < |\phi_j^*(0)| \) and \(\phi_{j+1} \) is a simple von Neumann polynomial or \(\phi_{j+1} \) is identically zero and \(\phi_j' \) is a Schur polynomial.

Theorem 3. \(\phi_j \) is a von Neumann polynomial of degree \(d \) if and only if either \(\phi_{j+1} \) is a von Neumann polynomial of degree \(d-1 \) and \(|\phi_j(0)| < |\phi_j^*(0)| \) or \(\phi_{j+1} \) is identically zero and \(\phi_j' \) is a von Neumann polynomial.

Theorem 4. \(\phi_j \) is a conservative polynomial if and only if \(\phi_{j+1} \) is identically zero and \(\phi_j' \) is a von Neumann polynomial.