How to find the location of roots of amplification polynomials: Schur and von Neumann polynomials Let $\phi(z)$ be a polynomial of degree d: $$\phi(z) = a_d z^d + \dots + a_0 = \sum_{l=0}^d a_l z^l.$$ We say that ϕ is of exact degree d if a_d is not zero. **Definition 1.** The polynomial ϕ is a Schur polynomial if all its roots, r_{ν} , satisfy $$|r_{\nu}| < 1.$$ **Definition 2.** The polynomial ϕ is a von Neumann polynomial if all its roots, r_{ν} , satisfy $$|r_{\nu}| \leq 1.$$ **Definition 3.** The polynomial ϕ is a simple von Neumann polynomial if ϕ is a von Neumann polynomial and its roots on the unit circle are simple roots. **Definition 4.** The polynomial ϕ is a conservative polynomial if all its roots lie on the unit circle, i.e. $|r_{\nu}| = 1$ for all roots r_{ν} . For a polynomial ϕ , we define a polynomial ϕ^* by $$\phi^*(z) = \sum_{l=0}^d \bar{a}_{d-l} z^l,$$ where the bar on the coefficients of ϕ denotes complex conjugate. Note that $$\phi^*(z) = \overline{\phi(\bar{z}^{-1})} z^d.$$ Finally, for a polynomial ϕ_0 we define recursively the polynomial $$\phi_{j+1}(z) = \frac{\phi_j^*(0)\phi_j(z) - \phi_j(0)\phi_j^*(z)}{z}.$$ It is easy to see that the degree of ϕ_{j+1} is less than that of ϕ_j . **Theorem 1.** ϕ_j is a Schur polynomial of exact degree d if and only if ϕ_{j+1} is a Schur polynomial of exact degree d-1 and $|\phi_j(0)| < |\phi_j^*(0)|$. **Theorem 2.** ϕ_j is a simple von Neumann polynomial if and only if either $|\phi_j(0)| < |\phi_j^*(0)|$ and ϕ_{j+1} is a simple von Neumann polynomial or ϕ_{j+1} is identically zero and ϕ_j' is a Schur polynomial. **Theorem 3.** ϕ_j is a von Neumann polynomial of degree d if and only if either ϕ_{j+1} is a von Neumann polynomial of degree d-1 and $|\phi_j(0)| < |\phi_j^*(0)|$ or ϕ_{j+1} is identically zero and ϕ_j' is a von Neumann polynomial. **Theorem 4.** ϕ_j is a conservative polynomial if and only if ϕ_{j+1} is identically zero and ϕ'_j is a von Neumann polynomial.