Math 269B, Winter 2003
Instructor: Luminita Vese

Homework #5
Due date: Monday, March 3, 2003

[1] Consider the one-way wave equation

\[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0. \]

Analyze the stability and the order of accuracy of the following *angled derivative method*

\[u_j^{n+2} = (1 - 2\lambda)(u_j^{n+1} - u_{j-1}^{n+1}) + u_{j-1}^n, \quad n \geq 0, \]

with \(\lambda = \frac{\Delta t}{\Delta x} \).

[2] *Computational assignment.* Consider the one-way wave equation

\[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0, \quad t > 0, \quad 0 < x < 2, \]

\[u(x, 0) = e^{-100(x-1/2)^2} \sin(20\pi x), \]

\[u(0, t) = u(2, t) = 0, \quad t \geq 0. \]

Find approximations of the exact solution at \(t = 1 \), using \(\Delta x = \frac{1}{50} \) and \(\lambda = \frac{\Delta t}{\Delta x} = \frac{2}{3} \), by three methods: the leapfrog method, the Lax-Wendroff method, and the angled derivative method.

Comment and compare the obtained approximations, function of accuracy, dissipation, dispersion, conservation (a non-dissipative scheme is called conservative). Give and plot the exact solution also at \(t = 1 \).

[3] *Computational assignment.* Consider now the same equation as in [2], but with the initial condition

\[u(x, 0) = \begin{cases} 1, & \text{if } \frac{1}{4} \leq x < \frac{3}{4}, \\ 0, & \text{otherwise}. \end{cases} \]

Find numerical approximations using four methods: the three methods used in [2] and the forward-in-time backward-in-space method (FTBS). In all
cases, take $\Delta x = \frac{1}{100}$ and $\lambda = \frac{\Delta t}{\Delta x} = \frac{2}{3}$. The boundary conditions are as in [2].

Plot the results at $t = 1$, together with the exact solution. Comment and compare the obtained results. Note that here the FTBS scheme is the upwind scheme, in the case $a = 1 > 0$ (positive speed of propagation).

[4] Show that the scheme

$$v_{i,m}^{n+1} = \frac{1}{k} \left(v_{i+1,m+1}^{n} + v_{i-1,m+1}^{n} + v_{i+1,m-1}^{n} + v_{i-1,m-1}^{n} \right) + a\Delta_x v_{i,m}^{n} + b\Delta_y v_{i,m}^{n} = 0$$

for the equation $u_t + au_x + bu_y = 0$, with $\Delta x = \Delta y = h$, is stable if and only if $(|a| + |b|)\lambda \leq 1$.

[5] Consider the system of equations

$$\begin{pmatrix} u \\ v \end{pmatrix}_t = A \begin{pmatrix} u \\ v \end{pmatrix}_x; \quad A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix},$$

which is approximated by the Lax-Friedrichs scheme, $V_j^n \approx (u(x_j, t_n), v(x_j, t_n))$,

$$V_j^{n+1} = \frac{1}{2} (V_{j+1}^n + V_{j-1}^n) + \frac{\Delta t}{2\Delta x} A (V_{j+1}^n - V_{j-1}^n).$$

Determine the stability properties depending on whether $\alpha \neq 0$ or $\alpha = 0$.

Hint: If $\alpha = 0$ this becomes an uncoupled system of two scalar one-way wave equations, and the stability condition of the scalar Lax-Friedrichs scheme applies for each equation. If $\alpha \neq 0$, show that the scheme is unstable (you can compute the amplification matrix $G(\theta)$, for constant λ, and show that the matrices G^n are unbounded in some matrix norm, for at least one value of θ). Compute an explicit form of G^n.

\pagebreak