Math 269B, Hw #1
Due date: Friday, January 17.

Note: I strongly encourage you to solve as many exercises as you can from the textbook, and not only those assigned. I also encourage you to work in group.

[1] (computational assignment) For \(x \in [-1, 3] \) and \(t \in [0, 2.4] \), solve the one-way wave equation
\[
u_t + u_x = 0,
\]
with the initial data
\[
u(0, x) = \begin{cases}
\cos^2 \pi x & \text{if } |x| \leq \frac{1}{2}, \\
0 & \text{otherwise},
\end{cases}
\]
and the boundary data \(u(t, -1) = 0 \).

Use the Lax-Friedrichs scheme with \(\lambda = 0.8 \) and \(\lambda = 1.6 \) and \(h = 1/10 \), \(h = 1/20 \). At the right boundary use the condition \(v_{M+1}^{n+1} = v_{M-1}^{n+1} \), where \(x_M = 3 \).

The Lax-Friedrichs scheme for \(u_t + au_x = 0 \) is
\[
\frac{v_{m}^{n+1} - \frac{1}{2}(v_{m+1}^{n} + v_{m-1}^{n})}{k} + a\frac{v_{m+1}^{n} - v_{m-1}^{n}}{2h} = 0.
\]

Graph or plot solutions at the last time they were computed. What can you say about the behavior of the numerical solutions as a function of \(h \) or \(\lambda \)?

You should turn in the code in the language of your choice, the plots and your interpretation of the tests performed.

[2] Show that the forward-time central-space scheme is consistent with the equation \(u_t + au_x = 0 \).

[3] Show that schemes of the form
\[
v_{m}^{n+1} = \alpha v_{m+1}^{n} + \beta v_{m-1}^{n}
\]
are stable if \(|\alpha| + |\beta| \leq 1\). Conclude that the Lax-Friedrichs scheme is stable if \(|a\lambda| \leq 1\).