Practice Problems

[1] Consider the numerical method for solving \(y' = f(x, y) \),

\[
y_{i+1} = y_i + \frac{h}{2} \left[f(x_i, y_i) + f(x_{i+1}, y_{i+1}) \right] + \frac{h^2}{12} \left[y''_i - y''_{i+1} \right],
\]

where \(y''_i = \frac{\partial f}{\partial x}(x_i, y_i) + f(x_i, y_i) \frac{\partial f}{\partial y}(x_i, y_i). \)

(a) Find the order of the method.

(b) What is the recurrence formula, when this method is applied to the (IVP) \(y' = -2y, \ y(0) = 1 \)?

[2] Consider the two-step method

\[
y_{i+1} = \frac{1}{2} (y_i + y_{i-1}) + \frac{h}{4} \left[4f(x_{i+1}, y_{i+1}) - f(x_i, y_i) + 3f(x_{i-1}, y_{i-1}) \right].
\]

(a) What is the order of this method? Show your work.

(b) Does this method converge? Explain.

[3] Consider the Runge-Kutta method for solving \(y' = F(y) \)

\[
y_{i+1} = y_i + ahF(y_i) + bhF(y_i + chF(y_i)).
\]

Find the coefficients \(a, b \) and \(c \), so that the method is of order 2.

[4] Consider the Euler’s method applied to \(y' = f(x, y) \),

\[
y_{i+1} = y_i + hf(x_i, y_i).
\]

Let \(e_i = y_i - y(x_i) \). Assume that the function \(f : [a, b] \times \mathbb{R} \to \mathbb{R} \) and its first order partial derivatives are continuous and bounded, and that \(f \) is Lipschitz with respect to \(y \), with Lipschitz constant \(M \). Assume also that \(y'' \) exists in \([a, b]\) and that it is bounded.

Show the inequality:

\[
|e_{i+1}| \leq (1 + hM)|e_i| + O(h^2).
\]