Math 269A, Fall 2002

HW # 7 Due date: Thursday, December 5, 2002. There will be NO EXTENSIONS ACCEPTED FOR THIS ASSIGNMENT. Turn in your homework directly to the TA. Note: keep a copy of your solutions for this homework, since it will graded after Friday, December 6.

[1]

- (a) Give the definition of an A-stable method.
- (b) Determine all values of θ such that the theta method given below is A-stable.

$$y_{i+1} = y_i + h [\theta f(x_i, y_i) + (1 - \theta) f(x_{i+1}, y_{i+1})], \quad i = 0, 1, ...$$

- [2] The two-step method $y_{i+1} = y_{i-1} + 2hf(x_i, y_i)$ is called the explicit midpoint rule.
- (a) Implement this two step method for the very simple differential equation y' = -y, y(0) = 1 (the exact solution is e^{-x} . Use $y_1 = y(h) = e^{-h}$ and the values h = 1/2, h = 1/4, h = 1/8, h = 1/16. Plot the exact solution and the numerical approximations on the interval [0,8]. You should turn in the code, and the plot of values.
- (b) Show that the region of absolute stability for the explicit midpoint rule is the empty set \emptyset .

Read pages 488-489 from Stoer and Bulirsch for additional examples.

[3] Consider the following (IVP):

$$y'_1 = 198y_1 + 199y_2, \quad y_1(0) = 1$$

 $y'_2 = -398y_1 - 399y_2, \quad y_2(0) = -1,$

that we write in matrix-vector form $\vec{y}' = A\vec{y}$, $\vec{y}(0) = \vec{y}_0$.

- (a) Find the exact solution of this autonomous linear system. What is its asymptotic behavior, as $x \to \infty$?
- (b) Compute the eigenvalues λ_1 and λ_2 of the matrix A and the corresponding matrix P of eigenvectors. What relation exists between A, P and $\Lambda = diag(\lambda_1, \lambda_2)$?
 - (c) Is this a stiff system of ODE's ? If yes, what is the stiffness ratio ? Explain.
 - (d) Apply the trapezoidal rule to this system following the steps:
 - (i) Express \vec{y}_{j+1} function of \vec{y}_j , by a recurrence formula given in matrix-vector form.
- (ii) If \vec{z}_j is defined such that $\vec{y}_j = P\vec{z}_j$, express \vec{z}_{j+1} function of \vec{z}_j in matrix-vector form and the associated scalar recursions for each component of \vec{z}_j .
- (e) If the system is solved using the trapezoidal method, what restriction, if any, has to be imposed on the stepsize h to obtain a correct qualitative behavior?
 - [4] Consider the van der Pol equation of the form

$$y_1' = y_2, \quad y_1(0) = 1$$

 $y_2' = (1 - y_1^2)y_2 - y_1, \quad y_2(0) = 1.$

- (a) Compute the Jacobian matrix of partial derivatives $\partial f_i/\partial y_j$.
- (b) Given that the solutions of the van der Pol equation tend to stay within a distance of ||y(0)|| from the origin, estimate the eigenvalues of the Jacobian matrix.
 - (c) Is this a stiff system of ODE's? Explain.