## MATH 269A, Fall 2002. HW #3 (due Friday, October 18)

1. Consider  $\Phi = \Phi(x, y, h)$  associated with the 2nd order R-K methods:

$$\Phi(x, y, h) = \frac{1}{2} [f(x, y) + f(x + h, y + hf(x, y))]$$
  
$$\Phi(x, y, h) = f(x + \frac{h}{2}, y + \frac{h}{2} f(x, y)).$$

Verify that, under appropriate assumptions on f, we have:

$$\frac{\partial \Phi}{\partial y} = \frac{\partial f}{\partial y} + O(h).$$

(we have used this property in general, in the proof of the asymptotic expansion of the global error).

2. Assume f = f(x, y) is analytic, Lipschitz with respect to y on some domain, with the Lipschitz constant M, bounded and with bounded first-order derivatives. Assume that the exact solution y = y(x) of the initial value problem  $y'(x) = f(x, y(x)), y(x_0) = y_0$  is also analytic.

Show that Euler's method is convergent (follow some steps from the proof of the general convergence theorem; also use Lemma 7.2.2.2). The proof has to be given for this particular case.

- **3.** Let  $y_{x,h}$  be the approximate solution furnished by Euler's method for the initial-value problem y' = y, y(0) = 1. Show:
  - (a)  $y_{x,h} = (1+h)^{x/h}$ .
- (b) In the expansion  $y_{x,h} = e_0(x) + e_1(x)h + e_2(x)h^2 + ...$ , with  $e_0(x) = e^x$ , find  $e_1(x)$  (use the fact that the exact solution is known).
  - 4. Consider again the (IVP)

$$y' = \frac{3x^2 + 4x + 2}{2(y - 1)}, \quad y(0) = -1.$$

- (a) Implement the classical fourth-order Runge-Kutta method and use it to numerically solve the (IVP).
- (b) Without using the formula of the exact solution, find an approximation of the error e(x, h) = e(2, 0.05) at step h = 0.05 for x = 2 (use two timesteps h = 0.1 and h = 0.05, and the application from the end of section 7.2.3, Stoer and Bulirsch). Compare this with the actual error (when the exact solution is known).