Sobolev spaces: properties

Theorem: (Leibniz’s formula) Assume \(u \in W^{m,p}(\Omega) \), \(|\alpha| \leq m\). If \(\xi \in C_0^\infty(\Omega) \), then \(\xi u \in W^{m,p}(\Omega) \) and

\[
D^\alpha (\xi u) = \sum_{\beta \leq \alpha} C_\beta^\alpha D^\beta \xi D^{\alpha - \beta} u,
\]

where \(C_\beta^\alpha = \frac{\alpha!}{\beta!(\alpha - \beta)!} \), \(\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n! \) for \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \).

Transformation of coordinates Let \(\Phi : \Omega \to G \) be a 1-to-1 and onto transformation, with inverse \(\Psi = \Phi^{-1} \), in \(n \) dimensions. We assume \(\Phi \in C^m(\Omega)^n \) and \(\Psi \in C^m(G)^n \). There are constants \(0 < c \leq C \) s.t. \(c \leq |\det \nabla \Phi(x)| \leq C \) for all \(x \in \Omega \). Using the notation \(y = \Phi(x) \), we define for a measurable function \(u \) on \(\Omega \), the measurable function \(Au \) on \(G \) by \(Au(y) := u(\Psi(y)) \).

Theorem: \(A \) transforms \(W^{m,p}(\Omega) \) boundedly onto \(W^{m,p}(G) \), and has a bounded inverse. In other words, there are constants \(C_1, C_2 \) s.t.

\[
C_1 \| u \|_{m,p,\Omega} \leq \| Au \|_{m,p,G} \leq C_2 \| u \|_{m,p,\Omega},
\]

for all \(u \in W^{m,p}(\Omega) \).

Particular case of Rellich-Kondrachov Theorem Assume \(\Omega \) open, bounded, and \(\partial \Omega \) Lipschitz, \(1 \leq p \leq \infty \). Then the canonical embedding \(W^{1,p}(\Omega) \to L^p(\Omega) \) is compact. In other words, we have:

(i) There is a constant \(C \) such that \(\| u \|_{L^p(\Omega)} \leq C \| u \|_{W^{1,p}(\Omega)} \), for all \(u \in W^{1,p}(\Omega) \).

(ii) If \(\{ u_n \} \) is a bounded sequence in \(W^{1,p}(\Omega) \), then there is a subsequence \(\{ u_{n_j} \} \) of \(\{ u_n \} \) convergent in \(L^p(\Omega) \).

Remark: Please note that under the same assumptions on \(\Omega \), as a corollary, if \(1 < p < \infty \), if \(\{ u_n \} \) is a bounded sequence in \(W^{1,p}(\Omega) \), then there is a subsequence \(\{ u_{n_j} \} \) and \(u \in W^{1,p}(\Omega) \) s.t. \(u_{n_j} \) converges to \(u \) strongly in \(L^p(\Omega) \) and weakly in \(W^{1,p}(\Omega) \).