3. Consider the linear programming problem below: Minimize $z = -x_1 + 2x_2 - 3x_4$ subject to

x_1			+	$2x_3$	—	x_4	\geq	1
		x_2	_	x_3			\geq	0
$2x_1$	—	$2x_2$			_	x_4	\geq	-3
				x_3	+	$2x_4$	\geq	3
$-3x_{1}$					+	x_4	\geq	-1
$x_1,$		$x_2,$		x_3 ,		x_4	\geq	0.

(a) Show that $x = (1, 1, 1, 2)^T$ is a feasible solution to the problem.

(b) Label each of the constraints of the problem as active or inactive for the feasible solution $x = (1, 1, 1, 2)^T$.

(c) Determine all values of a such that the vector $p = (-1, 1, 1, a)^T$ is a feasible direction at the feasible solution $x = (1, 1, 1, 2)^T$.

Solution:

(a) and (b): For $x = (1, 1, 1, 2)^T$, we have: 1 + 2 - 2 = 1 (the first constraint is active) 1 - 1 = 0 (the second constraint is active) 2 - 2 - 2 = -2 > -3 (the third constraint is inactive) 1 + 4 = 5 > 3 (the fourth constraint is inactive) -3 + 2 = -1 = -1 (the fifth constraint is active) and $x_i > 0$, so $(1, 1, 1, 2)^T$ is a feasible point or feasible solution.