I. Min f(x) $\begin{cases} \nabla f(x_*) = \vec{0} \\ \nabla^2 f(x_*) \text{ positive definite} \end{cases}$

II. Min f(x) subject to Ax = b (linear equality constraints, rows of A are linearly independent) $\begin{cases}
Ax_* = b \\
Z^T \nabla f(x_*) = \vec{0} \Leftrightarrow \nabla f(x_*) = A^T \lambda_* \\
Z^T \nabla^2 f(x_*) Z \text{ positive definite}
\end{cases}$

(Z is a null space basis matrix of A).

III. Min f(x) subject to $Ax \ge b$ (linear inequality constraints) $\begin{cases}
Ax_* \ge b \\
\nabla f(x_*) = A^T \lambda_* \\
\lambda_* \ge \vec{0} \\
\text{strict complementarity } (\lambda_{*,i} = 0 \text{ iff inequality } i \text{ inactive constraint}) \\
Z^T \nabla^2 f(x_*) Z \text{ positive definite}
\end{cases}$

(Z is a null space basis matrix of \hat{A} , submatrix of active constraints at x_* , \hat{A} has lin. ind. rows).

IV. Min f(x) subject to $g(x) = (g_1(x) \dots g_m(x))^T = \vec{0}$ (nonlinear equality constraints) Let $\mathcal{L}(x,\lambda) = f(x) - \sum_{i=1}^m \lambda_i g_i(x) = f(x) - \lambda^T g(x)$ and $Z(x_*)$ be a null space basis matrix of $\nabla g(x_*)^T$ (assume that gradients $\nabla g_i(x_*)$ are lin. ind.) $\begin{cases} g(x_*) = \vec{0} \\ \nabla_x \mathcal{L}(x_*,\lambda_*) = 0 \\ Z(x_*)^T \nabla_{xx}^2 \mathcal{L}(x_*,\lambda_*) Z(x_*) \end{cases}$ positive definite

V. Min f(x) subject to $g(x) = (g_1(x) \dots g_m(x))^T \ge \vec{0}$ (nonlinear inequality constraints) Let $\mathcal{L}(x,\lambda) = f(x) - \sum_{i=1}^m \lambda_i g_i(x) = f(x) - \lambda^T g(x)$ and $Z(x_*)$ be a null space basis matrix of the submatrix of $\nabla g(x_*)^T$ corresponding to active constraints (assume gradients $\nabla g_i(x_*)$ of active constraints $g_i(x_*) = 0$ are lin. ind.)

straints $g_i(x_*) = 0$ are int. Each, $\begin{cases} g(x_*) \ge \vec{0} \\ \nabla_x \mathcal{L}(x_*, \lambda_*) = 0 \\ \lambda_* \ge \vec{0} \\ \text{strict complementarity } (\lambda_{*,i} = 0 \text{ iff inequality } i \text{ inactive constraint}) \\ Z(x_*)^T \nabla^2_{xx} \mathcal{L}(x_*, \lambda_*) Z(x_*) \text{ positive definite} \end{cases}$

REMARKS:

• If $\nabla^2 f(x_*)$ positive definite, then $Z^T \nabla^2 f(x_*) Z$ is also positive definite (converse not true).

• If the matrix A (or \hat{A}) is non-singular (i.e. Null(A) is the empty set), then Z does not exist, and the condition $Z^T \nabla^2 f(x_*) Z$ is trivially satisfied.

• In IV and V, $\nabla g(x_*)^T$ plays the role of the matrix A, when g(x) = Ax - b, and $\nabla^2_{xx} \mathcal{L}(x_*, \lambda_*)$ plays the role of $\nabla^2 f(x_*)$.

• Recall: $\nabla \vec{g}(x)^T$ has the gradients $\nabla g_i(x)$ written as rows.

• "Negative definite" instead of "positive definite" for local maximizer (and $\lambda \leq 0$ for inequality constraints).

• For III and V, the textbook gives other sufficiency conditions for the case of degenerate constraints (Lemma 14.5 and Thm. 14.4).