MATH 164/2 Optimization, Winter 2006, Midterm Exam Solutions
Instructor: Luminita Vese
Teaching Assistant: Ricardo Salazar

[1] (10 points)
(a) Consider the following feasible set S = {x ER": Az >0b, x> 5} Show

that if the vector d satisfies d # 6, d >0 and Ad > 6, then d is a direction of
unboundedness for the set S.

(b) Consider the following linear programming problem:

Minimize z = 1 — 5z + 23 — 324

subject to
35(,’1 — X2 + 2%’4 Z 2
—214 + 3ry > -1
To — X3 > 2
51’1 — 31‘3 Z 2
Ti, Tp, T3, T4 > 0

(b1) Show that z = (2,4,2,1)7T is a feasible point to the problem and label each
of the constraints as active or inactive.

(b2) Show that the vector d = (1,2,1,1)7 is a direction of unboundedness (note
that this problem, as given, is not in standard form!)

Solution:

(a) We know by definition that d is a direction of unboundedness for S if d # 0
and if x +~vd € S, for any z € S and any v > 0.

Let x € S and v > 0 arbitrary. Then Ax > b, and using the assumptions on d,
we have:

Az +~d) = Az + A(yd) = Az + yAd > b+~0 = b.

Therefore A(x +~vd) >b (1)

Also, because z > 0, ~v>0and d> 0, we have x4+ yd > 6+75:5 (2)

From (1) and (2), we deduce that z + vd € S for any z € S and any v > 0,
therefore d # 0 is a direction of unboundedness for the set S.

(b1) We verify that = = (2,4,2,1)7 satisfies all eight constraints given.

3:2—442-1=4> 2 (Ist inactive)

—2-243-1=—1=—1 (2nd active)

4 —2=2=2(3rd active)

5-2—3-2=4>2 (4th inactive)

x1 = 2 > 0 (inactive), xo = 4 > 0 (inactive), 3 = 2 > 0 (inactive), x4 =1 >0
(inactive).

Therefore the point # = (2,4,2,1)7 satisfies all eight constraints of the problem,
so it is a feasible point, z € S.

(b2) Notice that d = (1,2,1,1)” # 0 and d > 0. Therefore, using the proof for
(a), it is sufficient to show that Ad > 0, where A is the matrix corresponding to the
first four constraints:



3 1 0 2
2 0 0 3
A=10 1 10
5 0 -3 0
Indeed,
3 -1 0 2\ /1 3
2 0 0 3|2 1L .
Ad=1 "0 1 4ol |=|1]7920
5 0 -3 0/ \1 9

therefore d = (1,2,1,1)T is a direction of unboundedness for S given in (b).

[2] (12 points) Consider the linear programming problem

Minimize z = ©; — 23 + 323

subject to
T + 21‘3 Z 4
T — X9 Z 0
—2l’1 + X9 + xs3 Z 1
ry, T2, x3 20

(a) Show that z = (1,1,2)7 is a feasible point to the problem.
(b) Show that p = (—2,—3,0)7 is a feasible direction at the feasible point z =
(1,1,2)".

(c) Determine the maximal step length a such that x + ap remains feasible, with
x and p as in part (b).

(d) Find the minimum value of p3, such that (=2, —3, p3
at v = (1,1,2)7.

Solution:

We will also label all six constraints, since this is needed for (b)-(d).

(a)

14+2-2=75> 4 (inactive)

1—-1=0=0 (active)

(=2)-1+1+4+2=1=1 (active)

x1 =1 > 0 (inactive), zo = 1 > 0 (inactive), z3 = 2 > 0 (inactive).

Therefore x = (1, 1,2)7 is a feasible point.

)T is a feasible direction

) (b) By the property from the course, it is sufficient to show that Ap > 0, where
A is the submatrix of A corresponding to active constraints only:

=)
. 1 -1 0 1] -
v Ll

therefore p = (-2, —3,0)7 is a feasible direction at = = (1,1,2)7.



(c) We know that only the inactive constraints determine the max step length
alpha.
r+ap = (1-2a,1-3a,2)T, then ., is obtained from imposing that this
point x + ap satisfies all inactive constraints, as follows:
1 -2«
102 1-3a|=1-2a+4>4=a<
2
1-2a>0=a<
1-3a>20=a<
2 > 0 = no restriction on «.
The intersection of all 4 above conditions an « will give us a < e = %
Note that the ratio test could have been used, and it would provide the same
answer (exercise).

1
2

W N[

(d) We proceed as in (b). We need to impose that Ap > 0, or that

—2
Ap::l 1 -1 01 PO l 1

>—#
-2 1 1 L4py |2V

D3

therefore we need 1+ p3 > 0, or p3 > —1.

[3] In solving a linear (minimization) programming problem by the simplex method,
we arrive at the objective function in the form

z =4x3 — 224 + 35 + 2,

and the dictionary
1 :$3—3ZL‘4—3ZL‘5+4

$2:2$3—ZL'4—|—I‘5—|—1.

Use the simplex algorithm to find the optimal solution to the minimization prob-
lem.

Solution:

At this step, xp = {71, 22} and xn = {23, x4, x5} = {0,0,0}. The corresponding
basic feasible solution is (4,1,0,0,0)7, with 2(4,1,0,0,0) = 2. We notice that x4,
now zero, has the negative coefficient —2 inside z, therefore z decreases further if x4
is increased from 0 to a positive value. Therefore x4 enters the basis, and we keep
r3 = x5 = 0 outside the basis.

At this new basic feasible solution with x3 = x5 = 0, we need to have:

1 =-3x4+4>0=124 < % and

To=—x4+1>0= x4 <1.

The intersection gives us x4 = 1, therefore x5 = 0 leaves the basis. The new
basis is g = {z1,24}, xy = {xa, 23,25} = {0,0,0}, with the new basic feasible
solution (1,0,0,1,0)T.

The new dictionary is:

1’4:—1‘2—|—2I‘3—|—£L’5—|—1,

x1 = w3 — 3(—x2 + 223 + x5 + 1) — 35 + 4 = 329 — by — 65 + 1, or the new
dictionary is



I = 3:1,’2 — 51’3 - 6l’5 + 1,

Ty = —T9 + 2x3 + x5 + 1 and the new z function of non-basic variables is

z =4x3 —2x4 + 3w5 + 2 =43 — 2(—29 + 223 + x5 + 1) + 325 + 2 = +229 + 5.

Notice now all variables inside z have postive or zero coefficients, therefore the
basic feasible solution (1,0,0,1,0)7 is optimal, with optimal value

min(z) = 2(1,0,0,1,0) = 0.

[4] (7 points) Suppose that a linear program has [ optimal extreme points {vy, ve, ..., v }.
Prove that if a feasible point x can be expressed as a convex combination of v;, then
x is optimal.

Solution: Let 2 be a convex combination of v, v, ..., vy, with z = ', a;v;, for
some «o; > 0 and Zézl a; = 1.

Let M :=mingz, with z(x) = ¢'z. Then 2(v;) = cfv; = M, for all i = 1,2, ..., .

We have: z(z) = cfz = ¢ (Zﬁzl aivi) = Y Taw) = XL, OAZ(CTUZ) =
SLiaiM=MY!_ ai=M-1=M = Min,s2(y), therefore z is also an optimal
solution of the linear programming problem.

(we use the fact that the function z is linear, the linearity was shown in class).

[5] (11 points)

(a) Recall the definitions of a convex set S and of a convex function g on S.

(b) Let g be a convex function on R". Prove that the set S = {:c cg(x) < ()} is
CONVeX.

(c) Let g1, g2 be two convex functions on the real line, and let r > 0 be a fixed
real number. Show that the function f(z) = = + g1(z) + rga(x) is also convex on
the real line.

Solution:

(a) The set S is convex if for any z,y € S and any 0 < o < 1, we have
ar+ (1 —a)yeSs.

The function g : S — R is convex on the convex set S if for any x,y € S and
any 0 < a < 1, we have g(az + (1 — a)y) < ag(z) + (1 — a)g(y).

(b) Let z,y € S and let 0 < o < 1 be arbitrary. Then g(z) < 0 and g(y) < 0.
We also have, by convexity of g:

glax+(1—a)y) <ag(z)+ (1 —a)g(y) <a-0+(1—a)-0=0 (because o > 0
and 1 —a > 0), therefore g(ax+ (1 —a)y) < 0 or ar+ (1 —a)y € S. In conclusion,
the set S is convex.

(c) Let z,y € R and 0 < o < 1 be arbitrary. We have

flac+(1—a)y) =ar+ (1 —a)y+ gi(ar+ (1 — a)y) +rgz(ar + (1 — a)y) <
by convexity of g; and go and r > 0

<ar+(1-a)y+ag(z)+ (1 —-a)uly)+r(ag(z) + (1 —a)g(y))

= ar +agi(r) + arga(z) + (1 —a)y+ (1 — a)gi(y) + (1 — a)rga(y)

= a(z+ g1(z) +r92(7)) + (1 — a)(y + 1(y) + 792(y)) = af(z) + (1 -

In conclusion, f is a convex function.

a)f(y)-



