Math 164: Homework #5, due on Friday, February 13

[1] Suppose that a linear program in standard form, with bounded feasible region, has l optimal extreme points $\{v_1, v_2, ..., v_l\}$. Prove that a point is optimal for the linear program if, and only if, it can be expressed as a convex combination of $\{v_1, v_2, ..., v_l\}$.

[2] Solve the following linear program using the simplex method (graph the feasible region, and outline the progress of the algorithm).

maximize
$$z = 7x_1 + 8x_2$$
, subject to
$$\begin{cases} 4x_1 + x_2 \le 100\\ x_1 + x_2 \le 80\\ x_1 \le 40\\ x_1, x_2 \ge 0. \end{cases}$$

[3] Compute a basis matrix for the null space of the matrix A and express the point x as x = p + q, where p is in the null space of A and q is in the range space of A^T :

	/ 1	1	1	1			1
A =		-1	-1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{1}$, x =	$\begin{array}{c} 3\\ 1\end{array}$.
	(0	T	0	1 /		$\begin{pmatrix} 2 \end{pmatrix}$)

[4] Consider the linear program: Minimize $z = x_1 - x_2$ subject to

$$\begin{array}{l} -x_1 + x_2 \leq 1 \\ x_1 - 2x_2 \leq 2 \\ x_1, \ x_2 \geq 0. \end{array}$$

Derive an expression for the set of optimal solutions to this problem, and show that this set is unbounded.

[5] Find the dual of minimize $z = 3x_1 - 5x_2 - 7x_3$, subject to $x_1 + 5x_2 - 8x_3 \ge 5$ $4x_1 - 2x_2 + 7x_3 \ge 7$ $x_1, x_2, x_3 \ge 0$.