Math 155. Instructor: Luminita Vese.
Teaching Assistant: Siting Liu.

Homework # 6, due on Friday, February 22

[1] (a) Show in discrete variables that
\[F(f(x, y) e^{2\pi i (u_0 x + v_0 y)}) = F(u - u_0, v - v_0), \]
where \(F = F(f) \).

(b) Using (a), deduce the formula used in shifting the center of the transform by multiplication with \((-1)^{x+y}\), when \(u_0 = M/2 \) and \(v_0 = N/2 \), with \(M \) and \(N \) even positive integers.

[2] (a) Show, in discrete variables, the translation property
\[F(f(x-x_0, y-y_0)) = F(u, v) e^{-2\pi i (x_0 u/M + y_0 v/N)}, \]
where \(F(u, v) = F(f(x, y)) \).

(b) Consider the linear difference operator \(g(x, y) = f(x+1, y) - f(x, y) \). Obtain the filter transfer function, \(H(u, v) \), for performing the equivalent process in the frequency domain.

[3] Prove the validity of the discrete convolution theorem in one variable (you may need to use the translation properties).

[4] Assume that \(f(x) \) is given by the discrete IFT formula in one dimension. Show the periodicity property \(f(x) = f(x + kM) \), where \(k \) is an integer.

[5] (a) Implement the Gaussian lowpass filter in Eq. (4.3-8), using a radius \(D_0 = 25 \), and apply the algorithm to Fig4.11(a).

(b) Highpass the input image used in (a), using a highpass Gaussian filter of radius \(D_0 = 25 \) (see eq. (4.4-4)).

(a) Write the Inverse Fourier transform formula by expressing \(f(x, y) \) function of \(F(u, v) \).

(b) Assume \(f \) is twice differentiable. Using (a), find the Fourier transform of the mixed partial derivative \(\frac{\partial^2 f}{\partial x \partial y} \), function of \(F \).