Final Exam, Math 151A/3, Fall 2001, UCLA, 12/11/2001, 8am-11am

NAME:

STUDENT ID #:

This is a closed-book and closed-note examination. Please show all you work. Partial credit will be given to partial answers.

There are 8 problems of total 100 points. Time: 3 hours.

SCORE:

Total

I Construct in 3 different ways the Lagrange interpolating polynomial for the following data:

x	$f(x) = xe^x$
$x_0 = 0$	0
$x_1 = 1$	e
$x_2 = 2$	$2e^2$

Method 1: by the definition of the Lagrange polynomial.

Method 2: by Neville's method.

Method 3: by Newton's interpolatory divided-difference formula.

II For the data in problem I, write the error formula, and find an upper bound for the absolute error, for x = 0.5.

\mathbf{III}

1. Giving two points x_0 and $x_0 + h$, with h > 0, and a function $f \in C^2[x_0, x_0 + h]$, derive an approximation to $f'(x_0)$, with error term.

2. We consider again the data from problem I:

x_i	$f(x_i)$
$x_0 = 0$	0
$x_1 = 1$	e
$x_2 = 2$	$2e^2$

Give:

One approximation to f'(0)

Three different approximations to f'(1)

One approximation to f''(1)

One approximation to f'(2)

IV Find the constants c_0 , c_1 and x_1 so that the quadrature formula

$$\int_0^1 f(x)dx = c_0 f(0) + c_1 f(x_1)$$

has the highest possible degree of precision. What is that degree of precision ?

V The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4, and Simpson's rule gives the value 2. What is f(1)?

VI Consider $f \in C^2[a, b]$, $h = \frac{b-a}{n}$, $x_j = a + jh$, j = 0, 1, ..., n, and $\mu \in (a, b)$. The error term in the Composite Trapezoidal rule is:

$$-\frac{b-a}{12}h^2f''(\mu).$$

(a) Determine the values of n and h required to approximate $\int_0^2 x e^x dx$ to within 10^{-4} , by the Composite Trapezoidal rule.

(b) Write the approximation formula for n = 4.

VII Solve the following linear system Ax = b, if possible, by Gaussian elimination with backward substitution, and determine whether row interchanges are necessary.

VIII For A the matrix coefficient of the linear system from problem VII, find a 4x4 permutation matrix P, such that PA can be factorized into LU, with L a lower triangular matrix with entries 1 on the diagonal, and U an upper triangular matrix. Find the matrices L and U.

Without showing the details, what are the steps for solving the same system Ax = b, using the factorization PA = LU?