NAME _

STUDENT ID # _____

This is a closed-book and closed-note examination. No calculators are allowed. Please show all your work. Partial credit will be given to partial answers. There are 9 problems of total 100 points.

PROBLEM	1	2	3	4	5	6	7	8	9	TOTAL
SCORE										

Problem 1 : Let [a, b] be an interval of \mathbb{R} , $x_0, x_1, ..., x_n$ be n + 1 points in [a, b] and $f \in C^{n+1}(\mathbb{R})$.

1-a Give the form of the Lagrange polynomial of degree at most n such that

 $f(x_k) = P(x_k)$, for each k = 0, 1, ..., n.

In the sequel, we will note this polynomial P_{x_0,x_1,\ldots,x_n} .

1-b Does another polynomial Q, of degree at most n, exist such that

$$f(x_k) = Q(x_k)$$
, for each $k = 0, 1, ..., n$.

- 1-c Deduce from the preceding question that any polynomial of degree at most n is exactly interpolated by a Lagrange polynomial.
- 1-d State the formula which, for $x \in [a, b]$, expresses f(x) in terms of $P_{x_0, x_1, \dots, x_n}(x)$ (the Lagrange polynomial defined in question 1-a) and a remainder term.
- 1-e Deduce from the preceding question that any polynomial of degree at most n is exactly interpolated by a Lagrange polynomial.
- 1-f Let $(i, j) \in \{0, 1, ..., n\}^2$ be two distinct integers. Taking the notation defined in question 1-a, express $P_{x_0, x_1, ..., x_n}$ in terms of $P_{x_0, x_1, ..., x_{i-1}, x_{i+1}, ..., x_n}$ and $P_{x_0, x_1, ..., x_{j-1}, x_{j+1}, ..., x_n}$.
- 1-g We can write the Lagrange polynomial $P_{\boldsymbol{x}_0,\boldsymbol{x}_1,\dots,\boldsymbol{x}_n}$ under the form

$$P_{x_0,x_1,\dots,x_n}(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0)(x - x_1) + \dots + a_n (x - x_0)(x - x_1)\dots(x - x_{n-1}).$$

Give the formula which permits to compute the numbers a_i , for i = 0, 1, ...n.

- 1-h Give the three point formula used to approximate $f'(x_0)$ and which involves $f(x_0 h)$ and $f(x_0 + h)$.
- 1-i Deduce from the preceding question that $f'(x_0)$ is exactly estimated by

$$\frac{1}{2h}[f(x_0+h) - f(x_0-h)]$$

when f is a polynomial of degree 2.

- 1-j State the Trapezoidal rule for $\int_a^b f(x) dx$.
- 1-k State the composite Simpson's rule for $\int_a^b f(x) dx$.

Problem 2: Let $f(x) = \cos(\frac{\pi x}{2})$ and P be the Lagrange polynomial of degree at most 3 which agrees with f at $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$.

2-a Compute P(0.5) using Neville's method.

2-b Express P(x) using Newton's divided difference formula. Use this result to compute P(0.5).

2-c Give a bound for the absolute error |f(0.5) - P(0.5)|.

Problem 3: Let t > 0 and $f(x) = e^{tx}$. We call P_n the Lagrange polynomial, of degree at most n-1, which agrees with f at the points 1, 2, ..., n.

3-a Check that, for any positive integer n and any $x \in \mathbb{R}$,

$$f^{(n)}(x) = t^n e^{tx} \,.$$

3-b Give the absolute error $|f(0) - P_n(0)|$ and prove that

$$t^n \le |f(0) - P_n(0)| \le t^n e^{tn}$$
.

- 3-c Discuss, in each of the following cases, whether we gain in using large values for n or not when approximating f(0) by $P_n(0)$:
 - t = 2 :
 - t = 0.1: (Hint : $ln(0.1) \approx -2.3$)

3-d What do you conclude?

Problem 4: A natural cubic spline S on [0, 2] is defined by

$$S(x) = \begin{cases} S_0(x) = 2 - x - x^2 + 3x^3 & \text{, if } 0 \le x < 1\\ S_1(x) = a + b(x-1) + c(x-1)^2 + d(x-1)^3 & \text{, if } 1 \le x < 2 \end{cases}$$

Find a,b,c,d.

Problem 5: Let $f(x) = x^3$. You can use the following table to answer the questions

ĺ	x	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4
	f(x)	0.216	0.343	0.512	0.729	1	1.331	1.728	2.197	2.744
	$\tilde{f}(x)$	0.2	0.3	0.5	0.7	1	1	2	2	3

5-a Use a three points formula, with h = 0.1, to compute f'(1).

5-b For this question, you may use the results of the operations listed below.

$$0.512 - 1.728 = -1.216; 1.331 - 0.729 = 0.602; 8 * 0.602 = 4.816.$$

Use a five points formula, with h = 0.1, to compute f'(1), and compare your result to the actual value of f'(1). Explain this result.

5-c For this question, you may use the results of the operations listed below.

$$\frac{0.3}{0.2} = 1.5, \frac{1.5}{0.4} = 3.75, \frac{1.7}{0.6} = 2.8333, \frac{2.8}{0.8} = 3.5.$$

Assume that for any $x \in [0, 2]$, we only know the approximation $\tilde{f}(x)$ of f(x) (see the bottom line of the table). Use a three points formula, with h = 0.1, h = 0.2, h = 0.3, h = 0.4, to compute f'(1).

Which one is the most accurate? Why (answer in one sentence)?

Problem 6 :

6-a State the definition of the degree of precision of a quadrature formula.

6-b Find the constants c_0, c_1, x_1 , so that the quadrature formula

$$\int_0^1 f(x)dx = c_0 f(0) + c_1 f(x_1)$$

has the highest possible degree of precision.

Problem 7: In this exercise, we are going to consider the approximation of

$$\int_0^\pi \sin(x)dx$$

by a composite Simpson's rule for n subintervals, with n an even integer.

- 7-a Find a condition on *n*, the number of subintervals, such that the composite Simpson's rule approximates $\int_0^{\pi} \sin(x) dx$ with an absolute error less than 0.00001.
- 7-b Check that n = 30 satisfies the condition found in the preceding question. (Hint: $\pi^5 \approx 306$)
- 7-c Write the algorithm for composite Simpson's rule, in the case of the function sin(x), for a value of n = 30.

Problem 8 :

8-a Use the Gaussian elimination with backward substitution to solve the linear system

8-b Use the Gaussian elimination with backward substitution to solve the following linear system for a parameter $e \in \mathbb{R}$.

8-c Interpreting e as a roudoff error, what do you think about the stability of the result (x_1, x_2) with regard to variations of e.

Problem 9:

9-a Use Newton-Raphson method to find a function g such that

$$g(\sqrt{3}) = \sqrt{3}$$

9-b Prove that, in general, given [a, b] an interval and $g \in C^1[a, b]$ such that g has a unique fixed point p in [a, b] and such that, there exists 0 < k < 1, with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$,

we have

$$|p_n - p| \le k^n \max\{|p_0 - a|, |p_0 - b|\}$$

(Hint: Prove first that $|p_n - p| \le k |p_{n-1} - p|$.)

9-c Find an interval (a, b), an initial point $p_0 \in (a, b)$ and a condition on the number of iteration $n \in \mathbb{N}$ such that the fixed point algorithm applied to the function of question 9-a approximates $\sqrt{3}$ with the accuracy 10^{-3} .

Hint : $\sqrt{3} \in [\frac{3}{2}, 2]$.

9-d Write Newton's algorithm for the function and the initial point you determined previously, for n iterations.