
UCLA MATH 151A/2, WINTER 2007, MIDTERM EXAM

NAME STUDENT ID #
This is a closed-book and closed-note examination. No calculators are allowed. Please
show all your work. Partial credit will be given to partial answers. There are 5
problems of total 100 points.

You do not have to completely carry out the algebraic calculations.

PROBLEM 1 2 3 4 5 TOTAL
SCORE

I. Let f(x) = 3x − ex, and the table

x 1 1.125 1.250 1.375 1.500 1.625 1.750 1.875 2
f(x) 0.2817 0.2948 0.2597 0.1699 0.0183 -0.2034 -0.5046 -0.8958 -1.3891

(a) Prove that the equation f(x) = 0 has at least a solution p in the interval [1, 2].

Solution: From the table, we see that f(1) = 0.2817 > 0, while f(2) = −1.3891. Also, f is
continuous on [1, 2], thus by the Intermediate Value Thm., there must be a p ∈ (1, 2) such that
f(p) = 0.

(b) By the Bisection method, find pn, n ≤ 2 on [1, 2], and write your answers in the next table.

n an bn pn f(pn)
0 1 2 1.5 0.0183
1 1.5 2 1.75 -0.5046
2 1.5 1.75 1.625 -0.2034

Solution:
(c) How many iterations are necessary to solve 3x − ex = 0 with accuracy 10−4 on [1, 2] ?

Solution: From the theorem from the course, we impose

|pn − p| ≤
b − a

2n
≤ 10−4,

thus we impose 2−1
2n ≤ 10−4, or 104 ≤ 2n.

This will give log10 104 ≤ log10 2n, or 4 ≤ n log10 2. Finally, n must be the smallest integer larger
or equal to 4

log10 2
.

II.
(a) Use the Theorem from the course to prove that g(x) = 2−x has a unique fixed point on [1

3
, 1].
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Solution: Note that g is continuous and differentiable in [1
3
, 1], with g′(x) = −2−x ln 2 < 0 on

[1
3
, 1].
Thus g is monotonically decreasing on [1

3
, 1], and g(1/3) ≥ g(x) ≥ g(1), or 1 > 1

21/3 ≥ g(x) ≥
1
2

> 1
3

for any x ∈ [1
3
, 1]. We deduce that

g(x) ∈ [
1

3
, 1], for any x ∈ [

1

3
, 1].

We have |g′(x)| = 2−x ln 2 ≤ 2−1/3 ln 2 = 1
21/3

ln 2 = k < 1.
Therefore, by the Fixed Point Theorem, there is a point p ∈ [1

3
, 1] such that g(p) = p.

(b) For p0 = 1/2, compute p1.

Solution: The fixed point iteration is pn+1 = g(pn), thus p1 = g(p0) = 2−1/2 = 1√
2
.

III.
(a) Recall Newton’s method for solving f(p) = 0, with f ′(p) 6= 0.

Solution: For given p0, with f ′(p0) 6= 0, the Newton’s iteration is

pn+1 = pn −
f(pn)

f ′(pn)
, n ≥ 0.

(b) Derive the Secant method from Newton’s method, using an approximation to the derivative.

Solution: We use finite differences to approximate

f ′(pn) ≈
f(pn) − f(pn−1)

pn − pn−1
.

Thus the Secant method is obtained by substituting f ′(pn) by this approximation in Newton’s
method:

pn+1 = pn −
f(pn)

f(pn)−f(pn−1)
pn−pn−1

, n ≥ 1,

knowing p0 and p1. Finally, the Secant Method is:
Given p0 and p1, compute for n ≥ 1 the sequence

pn+1 = pn −
f(pn)(pn − pn−1)

f(pn) − f(pn−1)
.

IV. Let f(x) = ln(x + 1), x0 = 0, x1 = 0.6 and x2 = 0.9.
(a) Construct, in two different ways, an interpolation polynomial of degree at most two to

approximate f , using the three points (you can use f(0.6) = 0.47 and f(0.9) = 0.6).

Solution:
Using the Lagrange interpolation formula, we have

P (x) = ln(1)
(x − 0.6)(x − 0.9)

(0 − 0.6)(0 − 0.9)
+ ln(1.6)

(x − 0)(x − 0.9)

(0.6 − 0)(0.6 − 0.9)
+ ln(1.9)

(x − 0)(x − 0.6)

(0.9 − 0)(0.9 − 0.6)
,

or

P (x) = 0 ·
(x − 0.6)(x − 0.9)

(−0.6)(−0.9)
+ 0.47

x(x − 0.9)

(0.6)(−0.3)
+ 0.6

x(x − 0.6)

(0.9)(0.3)
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P (x) = 0.47
x(x − 0.9)

(0.6)(−0.3)
+ 0.6

x(x − 0.6)

(0.9)(0.3)
.

Using now Newton’s devided differences formula:

P (x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1),

we first compute the coefficients:
f [x0] = f(x0) = 0,

f [x0, x1] = f [x1]−f [x0]
x1−x0

= f(x1)−f(x0)
x1−x0

= 0.47−0
0.3

= 0.47
0.3

.

f [x1, x2] = f [x2]−f [x1]
x2−x1

= f(x2)−f(x1)
x2−x1

= 0.6−0.47
0.3

= 0.13
0.3

.

f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

=
0.13
0.3

− 0.47
0.3

0.9
= −0.34

0.3×0.9
.

Therefore, P (x) = 0 + 0.47
0.3

x + −0.34
0.3×0.9

x(x − 0.6) = 0.47
0.3

x − 0.34
0.3×0.9

x(x − 0.6).
(the two obtained polynomials should coincide).

(b) Use the Theorem of the course to find an error bound for the approximation.

Solution: We have n = 2, thus there is ξ ∈ [0, 0.9] such that

f(x) = P (x) +
f (n+1)(ξ)

(n + 1)!
(x − x0)(x − x1)(x − x2).

We have f ′(x) = 1
x+1

, f ′′(x) = − 1
(x+1)2

, f ′′′(x) = (−2) 1
(x+1)3

, with

|f ′′′(x)| ≤ 2 for any x ∈ [0, 0.9].
Thus

|f(x) − P (x)| =
|f ′′′(ξ)|

6
|(x − 0)(x − 0.6)(x − 0.9)|

≤
2

6
0.9 · 0.6 · 0.9 =

1

3
0.9 · 0.6 · 0.9 = 0.3 · 0.6 · 0.9.

V. Using Taylor’s formula, show that

f ′(x0) =
f(x0 + h) − f(x0)

h
−

h

2
f ′′(ξ)

for some ξ, where h 6= 0, f ∈ C2[a, b], and x0, x0 + h ∈ (a, b).

Solution: By Taylor’s formula with remainder about x0, we have

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(ξ), (1)

for some ξ between x0 and x0 + h.
Solving for f ′(x0) in (1), we obtain

f ′(x0) =
f(x0 + h) − f(x0)

h
−

h

2
f ′′(ξ),

thus the desired formula.
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