
Solutions to selected exercises

• Use the Bisection method to find solutions accurate to within 10−2 for
x3 − 7x2 + 14x − 6 = 0 on [0,1].

Solution: Let f(x) = x3 − 7x2 + 14x − 6 = 0. Note that f(0) = −6 < 0
and f(1) = 2 > 0, therefore, based on the Intermediate Value Theorem, since
f is continuous, there is p ∈ (0, 1) such that f(p) = 0.

Let a0 = 0, b0 = 1, with f(a0) < 0, f(b0) > 0.
Let p0 = a0 + b0−a0

2
= 0.5, and we have f(p0) = −0.6250 < 0 (the same

sign as f(a0), therefore a1 = p0 = 0.5, b1 = b0 = 1 and repeat: p1 = 0.75, ...
This yields the following results for pn and f(pn):

n pn f(pn)
0 0.5 -0.6250000
1 0.75000000 +0.9843750
2 0.62500000 +0.2597656
3 0.56250000 -0.1618652
4 0.59375000 +0.0540466
5 0.57812500 -0.0526237
6 0.58593750 +0.0010313

• Use the theorem from the course to find a bound for the number of
iterations needed to achieve an approximation with accuracy 10−3 to the
solution of x3 − x − 1 = 0 lying in the interval [1, 4].

Solution: Let’s first verify that f has a zero in the interval [1, 4]: f(1) =
−2 < 0, f(4) = 64 > 0, therefore, since f is continuous, by the Intermediate
Value Theorem, f has a zero in [1, 4].

By the theorem from the course, we impose: |pn − p| ≤ b−a
2n = 3

2n ≤ 10−3,
then

3 · 103 ≤ 2n ⇒ n ≥
log10(3 · 103)

log10(2)
≈ 11.55

• Use algebraic manipulation to show that each of the following functions
has a fixed point at p precisely when f(p) = 0, where f(x) = x4 +2x2−x−3.

Solution:

(a) x = g1(x) ⇒ x = (3+x−2x2)1/4 ⇒ x4 = 3+x−2x2 ⇒ x4+2x2−x−3 =
0 ⇒ f(x) = 0

(b) x = g2(x) ⇒ x =
(

x+3−x4

2

)1/2
⇒ x2 = x+3−x4

2
⇒ 2x2 = x + 3 − x4 ⇒

x4 + 2x2 − x − 3 = 0 ⇒ f(x) = 0
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(c) x = g3(x) ⇒ x =
(

x+3
x2+2

)1/2
⇒ x2 = x+3

x2+2
⇒ x4 + 2x2 = x + 3 ⇒

x4 + 2x2 − x − 3 = 0 ⇒ f(x) = 0
(d) x = g4(x) ⇒ x = 3x4+2x2+3

4x3+4x−1
⇒ 4x4 + 4x2 − x = 3x4 + 2x2 + 3 ⇒

x4 + 2x2 − x − 3 = 0 ⇒ f(x) = 0

•
(a) Perform four iterations, if possible, on each of the functions g defined

in Exercise 1. Let p0 = 1 and pn+1 = g(pn) for n = 0, 1, 2, 3.
g1: p0 = 1, p1 = 1.1892, p2 = 1.0801, p3 = 1.1497, f(p3) = 0.2411
g2: p0 = 1, p1 = 1.2247, p2 = 0.9937, p3 = 1.2286, f(p3) = 1.0688
g3: p0 = 1, p1 = 1.1547, p2 = 0.1164, p3 = 1.1261, f(p3) = 0.0182
g4: p0 = 1, p1 = 1.1429, p2 = 0.1245, p3 = 1.1241, f(p3) = 0.000001
(b) Which function do you think gives the best approximation to the

solution ?
g4 gives the best approximation.

• Use the theorem from the course to show that g(x) = 2−x has a unique
fixed point on [1

3
, 1]. Use a corollary to estimate the number of iterations

required to achieve 10−4 accuracy.
Solution: We have:
g ∈ C1 on [1

3
, 1].

g′(x) = −2−x < 0 ⇒ g is decreasing on [1
3
, 1]. Then we deduce that if

1
3
≤ x ≤ 1, then 0.7937 = g(1

3
) ≥ x ≥ g(1) = 0.5. Therefore g(x) ∈ [1

3
, 1].

We also have that

Maxx∈[ 1
3
,1]|g

′(x)| = Maxx∈[ 1
3
,1]2

−x = 2−1/3 < 1.

Then k = 2−1/3 = 0.7937.
In conclusion, by the theorem from the course, g has a unique fixed point

in [1
3
, 1]

Take p0 = 1/3 for example. We would like:

|pn − p| ≤ knMax{p0 − a, b − p0} ≤ kn(1 −
1

3
) ≤ 10−4,

then kn ≤ 10−4

1− 1
3

then n log10(k) ≤ log10

(

10−4

1− 1
3

)

or n ≥
log10

(

10−4

1− 1
3

)

log10(k)
or n ≥ 38.10

In practice fewer iterations are needed (this is just an estimate).
(note that k = 2−1/3 < 1 so log10(k) < 0).
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• Let f(x) = −x3 − cos x and p0 = −1. Use Newton’s method to find p2.
Could p0 = 0 be used ?

Solution: f(x) = −x3 − cos x, f ′(x) = −3x2 + sin x

Using p0 = −1, for n ≥ 1, the Newton’s iteration is: pn = pn−1 −
f(pn−1)
f ′(pn−1)

.
This gives

p1 = p0 −
f(p0)
f ′(p0)

≈ −0.8803

p2 = p1 −
f(p1)
f ′(p1)

≈ −0.8657

p0 = 0 could not be used because f ′(0) = 0 (division by 0).

• Let f(x) = −x3−cos x. With p0 = −1 and p1 = 0 find p3 by the Secant
method.

Solution: The Secant method iteration: n ≥ 2 pn+1 = pn − f(pn)
f(pn)−f(pn−1)

pn−pn−1

⇒ pn+1 = pn − f(pn)(pn−pn−1)
f(pn)−f(pn−1)

.

We have f(p0) = f(−1) = 0.4597, f(p1) = f(0) = −1, p2 = p1 −
f(p1)(p1−p0)
f(p1)−f(p0)

≈ −0.6851

p3 = p2 −
f(p2)(p2−p1)
f(p2)−f(p1)

≈ −1.2521

• Show that the sequence pn = 10−2n

converges quadratically to zero.
Solution: We have limn→∞ pn = limn→∞

1
102n = 0, then, following the

definition of quadratic convergent sequence, we compute:

lim
n→∞

|pn+1 − 0|

|pn − 0|2
= lim

n→∞

10−2n+1

(10−2n)2
= lim

n→∞

10−2n+1

10−2n+1 = 1 < ∞.

Therefore, we have α = 2 and 0 < λ = 1 < ∞ in the definition. This proves
that the sequence pn converges quadratically to 0.

• Suppose p is a zero of multiplicity m of f , where f ′′′ is continuous on
an open interval containing p. Show that the following fixed-point method
has g′(p) = 0:

g(x) = x − m
f(x)

f ′(x)
.

Solution: By the definition of multiplicity of zeros, we have: f(x) =
(x − p)mq(x), where q(p) 6= 0. Then

g(x) = x−m
f(x)

f ′(x)
= x−

m(x − p)mq(x)

m(x − p)m−1q(x) + (x − p)mq′(x)
= x−

mq(x)(x − p)

mq(x) + (x − p)q′(x)
.
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Then

g′(x) = 1 −
1

(mq(x) + (x − p)q′(x))2

[

(mq′(x)(x − p) + mq(x))(mq(x) + (x − p)q′(x))

+mq(x)(x − p)(mq′(x) + q′(x) + (x − p)q′′(x))
]

⇒ g′(p) = 1 −
(mq(p))2

(mq(p))2
= 0.

Remarks on the above problem: note that if m = 1, then this is Newton’s
method. This method can be applied only when we know a-priori the mul-
tiplicity m of the root p. In this case, the method is at least quadratically
convergent, because g′(p) = 0 (see Thm. 2.8).
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