
Solutions to selected exercises from the textbook

Exercise 2/2.1: T : R3 → R2 defined by T (a1, a2, a3) = (a1 − a2, 2a3).
To find N(T ) and a basis, let a1, a2, a3 be s.t. T (a1, a2, a3) = (a1 −

a2, 2a3) = (0, 0). Then
{

a1 − a2 = 0
2a3 = 0

or a1 = a2, a3 = 0. Therefore N(T ) = {(a, a, 0), a ∈ R} and dim(N(T )) = 1,
a basis of N(T ) is given by {(1, 1, 0)}, therefore nullity(T ) = 1. We deduce
(by Thm. 2.4) that T is not one-to-one, because N(T ) 6= {0}.

We could have obtained this statement directly by the definition: note
that there are distinct vectors ~a,~b in R3 such that T (~a) = T (~b) with ~a 6= ~b.
Indeed T (2, 2, 1) = T (1, 1, 1) = (0, 2), therefore T is not one-to-one.

By the Dimension Theorem, we obtained that dim(R(T )) = 3−dim(N(T )) =
2. This implies that dim. of range of T coincides with dim. of R2, i.e.
R(T ) = R2, i.e. T is onto.

This could have been done in the following way: let (x, y) ∈ R2 be arbi-
trary, and find (a1, a2, a2), if any, such that T (a1, a2, a3) = (x, y). This would
imply a1 − a2 = x, and 2a3 = y. We see that (x, y) is always in the image
of T , by T (a, a − x, y/2) = (x, y). Again, we conclude that T is onto and a
basis of R(T ) is any basis of R2, for instance of standard basis {(1, 0), (0, 1)}.

Exercise 5/2.1: T : P2(R) → P3(R), T (f(x)) = xf(x) + f ′(x).
Note that T (a0 + a1x + a2x

2) = a0x + a1x
2 + a2x

3 + (a1 + 2a2x) =
a1 + (a0 + 2a2)x + a1x

2 + a2x
3, with f(x) = a0 + a1x + a2x

2.
f(x) ∈ N(T ) if T (f(x)) = 0 for any x, therefore if a1 = 0, a0 + 2a2 = 0,

a1 = 0, a2 = 0, i.e. a0 = a1 = a2 = 0, therefore N(T ) = {0}. We deduce
that T is one-to-one, by Thm. 2.4.

By the Dim. Thm, we deduce that dim(R(T )) = dim(P2(R))−dim(N(T )) =
dim(P2(R)) = 3. However, dim(P3(R)) = 4, therefore R(T ) 6= P3(R) and T
is not onto.

From T (a0 + a1x + a2x
2) = a1 + (a0 + 2a2)x + a1x

2 + a2x
3 = a1(1 + x2) +

a0x+a2(2x+x3) we see that a basis for R(T ) is given by {1+x2, x, 2x+x3}
(clearly we see that it is a generator of {T (a0 + a1x + a2x

2)} and is l.i.).

Exercise 14/2.1:
(a) Assume T one-to-one. Let S = {v1, v2, ..., vn} ⊂ V be l.i., and let

S ′ = {T (v1), T (v2), ..., T (vn)}.
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Assume a1T (v1)+a2T (v2)+...+anT (vn) = 0W for some scalars a1, ..., an ∈
F . Then, since T is linear, we have T (a1v1 + a2v2 + ...anvn) = 0W . But
T is also one-to-one, i.e. N(T ) = {x : T (x) = 0W} = {0V }, therefore
a1v1 + a2v2 + ...anvn = 0V . But S = {v1, v2, ..., vn} is l.i., this implies that
a1 = 0, a2 = 0, ..., an = 0. In conclusion, S ′ = {T (v1), T (v2), ..., T (vn)} is l.i.

Converse: assume by contradiction that T is not one-to-one. Then N(T ) 6=
{0V }, therefore there is v ∈ N(T ) with v 6= 0V , with T (v) = 0W . But this is
a contradiction, since {v} is l.i., while {T (v) = 0W} is l.d. In conclusion, T
must be one-to-one.

(b) From left to right: directly by (a). From right to left: by Exercise 13
(was proved in class and at Midterm 1).

(c) By property (a), since T is one-to-one and β is l.i. (it is a basis),
we deduce that T (β) is l.i. Now since T is also onto, and by the Dim.
Thm. (also by dim(N(T )) = 0) we have that dim(R(T )) = dim(W ) and
dim(R(T )) = dim(V ) − dim(N(T )) = n. Therefore dim(W ) = dim(V ) = n
and S(β) is therefore a basis of W , because S(β) is l.i. and contains exactly
n distinct vectors.

Exercise 17/2.1:
(a) By the Dimension Thm., we have dim(N(T ))+dim(R(T )) = dim(V ).

If dim(V ) < dim(W ), then dim(R(T )) ≤ dim(V ) < dim(W ), therefore
dim(R(T )) < dim(W ). This shows that R(T ) 6= W , i.e. T is not onto.

(b) We apply again Dimension Thm: dim(N(T ))+dim(R(T )) = dim(V ).
We also know dim(R(T )) ≤ dimW , therefore dim(V ) > dim(W ) ≥ dim(R(T )) =
dim(V ) − dim(N(T )), i.e. 0 > −dim(N(T )) or dim(N(T )) > 0. Therefore,
N(T ) 6= {0V }, and by Thm. 2.4, T is not one-to-one.

Note that these general properties (a) and (b) could have been applied
to the linear transformations from Exercises 2 and 5 above.

Exercise 15/2.2:
(a) Clearly the zero transformation T0 : V → W belongs to S0, because

T0(x) = 0W ofr any x ∈ V , including any x ∈ S.
If T1, T2 ∈ S0, and if x ∈ S, then (T1+T2)(x) = T1(x)+T2(x) = 0W +0W =

0W , for any x ∈ S, therefore T1 + T2 ∈ S0.
Similarly, if T ∈ S0 and c ∈ F , then for any x ∈ S: (cT )(x) = cT (x) =

c0W = 0W , therefore (cT ) ∈ S0. In conclusion, S0 is a subspace.
(b) If T ∈ S0

2
, then T (x) = 0 for any x ∈ S2; but S1 ⊂ S2, therefore

T (x) = 0 for any x ∈ S1, i.e. T ∈ S0

1
.
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(c) If T ∈ V 0

1
∩V 0

2
, then T ∈ V 0

1
and T ∈ V 0

2
. Therefore T (x) = 0 for any

x ∈ V1 and T (x) = 0 for any x ∈ V2. This implies that for any x = u + v ∈
V1 + V2 with u ∈ V1 and v ∈ V2, then T (x) = T (u + v) = T (u) + T (v) =
0 + 0 = 0, therefore T ∈ (V1 + V2)

0. In other words, V 0

1
∩ V 0

2
⊂ (V1 + V2)

0.
To show the other inclusion: we have V1 ⊂ V1 +V2 (since V2 is a subspace

and 0V ∈ V2), therefore from (b), (V1 + V2)
0 ⊂ V 0

1
. Similarly, V2 ⊂ V1 + V2

(since V1 is a subspace and 0V ∈ V1), therefore again from (b), (V1 + V2)
0 ⊂

V 0

2
. These last two statements imply (V1 + V2)

0 ⊂ V 0

1
∩ V 0

2
.

In conclusion: (V1 + V2)
0 = V 0

1
∩ V 0

2
.

Exercise 3/2.4: By Thm. 2.19:
(a) not isomorphic, the dimensions are different: 3 and 4.
(b) isomorphic, the dimensions are the same = 4.
(c) isomorphic, the dimensions are the same = 4.
(d) not isomorphic, the dimensions are different: dim(V ) = 3 and dimW =

4.

Exercise 14/2.4: Let T (

(

a a + b
0 c

)

) = (a, b, c). Finalize the problem

by showing that T is linear, one-to-one and onto.
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