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Exercise 5.2.2b: For each of the following matrices A ∈ Mn(R), test A for
diagonalizability, and if A is diagonalizable, find an invertible matrix Q and a
diagonal matrix D such that Q−1AQ = D.

A =
(

1 3
3 1

)

Solution: The characteristic polynomial is

p(t) = (1− t)2 − 9
= t2 − 2t− 8
= (t− 4)(t + 2).

Since the dimension of our vector space is 2 and we have found 2 distinct eigen-
values: 4 and -2, we conclude that A is diagonalizable. Furthermore,

Q =
(

1 1
1 −1

)
.

Exercise 5.2.3b: For each of the following linear operators T on a vector
space V , test T for diagonalizability, and if T is diagonalizable, find a basis
β for V such that [T ]β is a diagonal matrix: V = P2(R) and T is defined by
T (ax2 + bx + c) = cx2 + bx + a.

Solution: By inspection, we see that T (x2 + x + 1) = x2 + x + 1 and T (x) = x.
Therefore Eig1(T ) = span({x2 + x + 1, x}). Secondly, we see that T (x2 − 1) =
−(x2−1) and therefore Eig−1(T ) = span({x2−1}). So Eig1(T ) = Eig−1(T ) =
3 = dim(V ) and hance T is diagonalizable. Define β = {x2 + x + 1, x2 − 1, x}.
Then

[T ]β =

 1 0 0
0 −1 0
0 0 1

 .

Of course β isn’t unique. Any permutation of the ordering will give you a diag-
onal matrix, perhaps with the diagonal entries permuted. BE CAREFUL: This
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proof is done in a rather extemporaneous fashion. I would advise you to do it via
the standard approach of looking at the characteristic polynomial, eigenvalues,
etc.

Exercise 5.2.8: Suppose that A ∈ Mn(F) has two distinct eigenvalues, λ1

and λ2, and that dim(Eλ1) = n− 1. Prove that A is diagonalizable.

Solution: Since dim(Eλ2) ≥ 1, and we know that dim(Eλ1) + dim(Eλ2) ≤ n,
this forces dim(Eλ2) = 1. Let Ei be the eigenspace of A corresponding to λi.
Since E1 ∩ E2 = {0}, and under dimension considerations, we conclude that
V = E1 ⊕ E2. By Theorem 5.11, we’re done. (Note: Make sure you can prove
that E1 and E2 form a direct sum.)

Exercise 5.2.18a: Prove that if T and U are simultaneously diagonalizable
operators, then T and U commute.

Solution: Let β be the basis that simultaneously diagonalizes T and U . Since
diagonal matrices commute with each other, we conclude that

[TU ]β = [T ]β [U ]β = [U ]β [T ]β = [UT ]β .

Since [TU ]β = [UT ]β , we conclude that T commutes with U . (We’ve only proven
that with respect to this particular basis that their matrix representations com-
mute. Yet we are concluding something that is so much stronger. Why can we
do this? Make sure you know.)

Exercise 6.1.9 Let β = {β1, ..., βn} be a basis for a finite-dimensional in-
ner product space. (a) Prove that if 〈x, z〉 = 0 for all z ∈ β, then x = 0. (b)
Prove that if 〈x, z〉 = 〈y, z〉 for all z ∈ β, then x = y.

Solution: (a) Express x with respect to β: x = a1β1 + · · · anβn. Then

〈x|z〉 = 〈
n∑

i=1

aiβi|z〉

=
n∑

i=1

ai〈βi|z〉 (By property (i.) and (iii.) of the definition of 〈·|·〉)

= 0 (By assumption).

(b) It suffices to prove that 〈x−y|z〉 = 0, because we can simply use property (i.)
of the definition of the inner product to get what we want. But if 〈x− y|z〉 = 0,
then by part (a) x− y = 0 → x = y. This completes our proof.

Exercise 6.1.12: Let {v1, v2, ..., vk} be an orthogonal set in V , and let a1, a2, ..., ak

be scalars. Prove that

‖
k∑

i=1

aivi‖=
k∑

i=1

|ai|2‖vi‖2.
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Solution:

‖
k∑

i=1

aivi‖ = 〈
k∑

i=1

aivi |
k∑

j=1

ajvj〉

=
k∑

i=1

ai〈vi |
k∑

j=1

ajvj〉

=
k∑

i=1

ai〈
k∑

j=1

ajvj | vi〉

=
k∑

i=1

ai

k∑
j=1

aj〈vj | vi〉

=
k∑

i=1

ai

k∑
j=1

aj〈vi | vj〉

∗=
k∑

l=1

alal〈vl | vl〉

=
k∑

l=1

|al|2‖vl‖2

where ∗ used the orthogonality assumption.

Exercise 6.1.17: Let T be a linear operator on an inner product space V ,
and suppose that ‖T (x)‖= ‖x‖ for all x. Prove that T is one-to-one.

Solution: Let x ∈ N(T ). Then ||x|| = ||T (x)|| = ||0||. By property (iv.) of
〈· | ·〉 we conclude x = 0. Therefore T is injective. This completes the proof.

3


