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Exercise 5.1.7a: Let T be a linear operator on a finite-dimensional vector
space V . We define the determinant of T , denoted det(T ), as follows: Choose
any ordered basis β for V , and define det(T ) = det([T ]β). Prove that the pre-
ceding definition is independent of the choice of an ordered basis for V . That
is, prove that if β and γ are two ordered bases for V , then det([T ]β) = det([T ]γ).

Solution: Let β and γ be two ordered bases for V . Then we have the following
equality:

[T ]β = Q[T ]γQ−1,

where Q is the change of coordinate matrix from β to γ. Taking determinants
on both sides and noting the commuting property of determinants, our claim is
immediate.

Exercise 5.1.8a: Prove that a linear operator T on a finite-dimensional vector
space is invertible if and only if zero is not an eigenvalue of T .

Solution: On a finite dimensional vector space V , T is invertible if and only
if T is injective, i.e. N(T ) = {0}. This means that the only vector v such that
T (v) = 0 is the zero vector. But these vectors are precisely the eigenvectors of
T corresponding to eigenvalue 0. Therefore we see that there must be no such
eigenvectors, as eigenvectors must be nonzero. The reverse direction is basically
the same argument, only ran backwards.

Exercise 5.1.9: Prove that the eigenvalues of an upper triangular matrix M
are the diagonal entries of M .

Solution: Let M ∈ Mn(F) be upper triangular, ie-

M = (mij),

where mij = 0 whenever i > j. Since the eigenvalues of M are precisely the
roots of its characteristic polynomial, the roots of

p(t) = det(M − tIn) ∗=
n∏

i=1

(mii − t)
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are precisely the eigenvalues. (∗ is from the fact that M − tIn is also an upper
triangular matrix and the determinant of an upper triangular matrix is just
the product of its diagonal entries.) Therefore the eigenvalues of M are mii,
1 ≤ i ≤ n. This completes the proof.

Exercise 5.1.11: A scalar matrix is a square matrix of the form λI for
some scalar λ; that is, a scalar matrix is a diagonal matrix in which all the
diagonal entries are equal. (a) Prove that if a square matrix A is similar to a
scalar matrix λI, then A = λI. (b) Show that a diagonalizable matrix having
only one eigenvalue is a scalar matrix.

Solution: (a) Let A ∈ Mn(F) be such that A = QSQ−1 for some invertible
Q and scalar matrix S. More to the point, let S = λI for some λ ∈ F. Then

A = Q(λI)Q−1 = λQQ−1I = λI.

This completes the proof.

(b) Let A be diagonalizable having only one eigenvalues, say, λ. Then

A = QDQ−1

for some invertible Q and diagonal D. On the other hand, we know that in such
a situation, the diagonal entries of D are precisely the eigenvalues of A. In this
case since we only have one eigenvalue, D must be the scalar matrix λI. Then
by part (a), A = λI. This completes our proof.

Exercise 5.1.14: For any square matrix A, prove that A and At have the
same characteristic polynomial (and hence the same eigenvalues).

Solution: Let f(t) and g(t) denote the characteristic polynomials of A and
At, respectively. Then

f(t) = det(A− tI) ∗= det((A− tI)t) = det(At − tI) = g(t),

where ∗ should be obvious (as in you should know how to prove this fact). Since
f(t) = g(t), their roots coincide. Therefore A and At have the same eigenvalues.
This completes the proof.

Exercise 5.1.15a: Let T be a linear operator on a vector space V , and let
x be an eigenvector of T corresponding to the eigenvalue λ. For any positive
integer m, prove that x is an eigenvector of Tm corresponding to the eigenvalue
λm.

Solution: We prove by induction on m. Base case: m = 1 holds, by defini-
tion that x is an eigenvector of T corresponding to λ. Inductive hypothesis: Let
us suppose that the claim is true for m > 1, that is: Tm(x) = λmx. Then

Tm+1(x) = T (Tm(x)) ∗= T (λm(x)) = λmT (x) = λmλx = λm+1x,
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where ∗ is the inductive hypothesis. Therefore the claim is true for m + 1. By
induction the proof is complete.

Exercise 5.1.17a: Let T be a linear operator on Mn(R) defined by T (A) = At.
Show that ±1 are the only eigenvalues of T .

Solution: Let λ be an eigenvalue of T and A be an eigenvector of T corre-
sponding to λ. Then

λA = T (A) = At.

Applying T again to everything gives us:

λ2A = T (λA) = T 2(A) = (At)t = A.

Therefore λ2 = 1 and hence λ = ±1.
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