Math 115a: Selected Solutions to HW 5

December 5, 2005

Exercise 2.4.4: Let A and B be n x n invertible matrices. Prove that AB is
invertible and (AB)~! = B~1A~L

Solution: Let A and B be invertible n x n matrices. Then

(AB)Y(B'A™Y) = A(BB DA ' = ATA ' = AJA ) = AA ' = I

Exercise 2.4.5: Let A be invertible. Prove that A? is invertible and (A")~! =
(A1),

Solution: In proving that (A*)~! = (A71), all we need to do is to verify that it
is both a left inverse as well as a right inverse:

(A)(ATH = (ATTA)" = (1) = I,
where * is a standard property of the transpose operator. Similarly,
(A7)H(AY) = (A7) = (L)' = L.
Therefore A? is invertible and we have verified what its inverse is.

Exercise 2.4.10: Let A and B be n X n matrices such that AB = I,,.

(a) Use Exercise 9 to conclude that A and B are invertible.

(b) Prove A = B~! (and hence B = A™1).

(c) State and prove analogous results for linear transformations defined on finite-
dimensional vector spaces.

Solution:

(a) By Exercise 9, if AB is invertible, then so are A and B. Clearly AB = I, is
invertible. Therefore our conclusion follows immediately.

(b) We need to show that A = B~1, which means that AB = BA=1,,. AB=1,
is given to us by assumption, so it suffices to show BA = I,,: Multiplying A on
the right of I,, = AB, we get

A=1,A= ABA.



Since A is invertible, there exists A~'. Therefore we can multiply on the left by
A1 to get

A7'A=A"Y(ABA) = (A"'A)BA = I, BA = BA.

Reducing A=A = I,,, and we get our conclusion.

(c) Claim: Let V' be a n-dimensional vector space over F.If S, T are linear op-
erators on V such that ST : V — V is an isomorphism, then both S and T are
isomorphisms.

Proof: Suppose S, T are linear operators on V such that ST is an isomorphism.
Let 8 = {f1, B2, ..., Bn} be an ordered basis for V. Let A and B be the matrix
representation of S and T, respectively, using f:

A= [S]ﬂv B = [T]ﬁ'

Then [ST]3 = AB. Since ST is an isomorphism, AB is an invertible matrix.
By part (a), both A and B are invertible. Finally, this implies that both S and
T are isomorphisms; this completes our proof. Exercise 2.4.17: Let V and W
be finite-dimensional vector spaces and T : V' — W be an isomorphism. Let Vj
be a subspace of V.

(a) Prove that T'(Vp) is a subspace of W.
(b) Prove that dim (V5) = dim(T'(Vp)).

Solution:

(a) Let ¢ € F and wy,ws € T (V). We need to show that cw; +we € T(Vp). Let
v1,v9 € Vg such that T'(v;) = w;. Since Vj is a subspace of V, it cvy + vy € V.
Therefore T(cv; + v2) = ¢T'(v1) + T(ve) = cwy + we € T(Vp). Finally, since
T(0) =0 € T(Vp) we are done.

(b) Let us define T’VO : Vo — T(Vp) to be simply the restriction of T to
the domain V. Since T is a isomorphism, N(T) = {0}. Therefore it follows
that N(T‘VO) = {0}. And hence T|V0 is injective. By the dimension formula,
dim (Vo) = nullity(T,, ) + rank(T|,, ) = rank(T|, ) = dim (R(T],)) = dim
(T(Vo))-

Exercise 2.4.20: Let T : V — W be a linear transformation from an n-
dimensional vector space V to an m-dimensional vector space W. Let 8 and
be ordered bases for V' and W, respectively. Prove that rank(T") = rank(L4)
and that nullity(7) = nullity(L4), where A = [T7}.

We begin with the following claim: If S : V™ — W™ is an isomorphism
and T : W™ — Z" is a linear transformation, then rank(7'S) = rank(7") and
nullity (7°'S) = nullity (T') (Note: the superscripts on the vector spaces denote



dimension).

Sketch of the proof of the claim: Let {z1, ..., z;} be a basis of R(T"). Then there
exists {wy, ..., w} € W such that T'(w;) = z;. Let {wiy1,...,wn} be a basis of
N(T). Then it follows that {wi,...,wp,} is a basis for W (prove this). Since S
is an isomorphism between V and W, it is injective and surjective. Therefore
there exists {v1,...,v,,} C V such that S(v;) = w;. Furthermore, {vg11, ..., Vm }
is a basis for N(T'S) (why?) Therefore the R(T'S) = span{T'S(v1),...,T'S(vg)}
= span{T(w1), ..., T(wg)} = span {z1,...,2x} = R(T), and all of these sets of
vectors for bases for their respective vector spaces. Apply dimension to both
sides and we get rank(7'S) = rank(T"). Now use the dimension formula to get
nullity (7°S) = nullity (7).

A similar claim goes as follows: Let T': V™ — W™ be a linear transforma-
tion and S : W™ — Z™ be an isomorphism. Then nullity(ST') = nullity (7') and
rank(ST') = rank(T).

The proof of this claim is almost the same as the proof of the first claim.

Proof of the Exercise: Using Figure 2.2 we see that Ly = ¢, 0T o qSEl. Since
¢~ is an isomorphism, by the first claim, rank (¢, 0T o gf)gl) = rank (T o d)gl).
Since qb[;l is an isomorphism, by the second claim, rank (T o gbgl) = rank (7).
Putting all of this together we get the following string of equalities:

rank(L4) = rank(¢, o T o (j)gl) = rank (7).

Proving equality of the nullity is literally the same as that for the rank; simply
replace all occurrences of “rank” with “nullity”.

Exercise 2.5.10: Prove that if A and B are similar n X n matrices, then
tr(A) = tr(B).

Solution: Let @) be the matrix such that A = QBQ~!. Then

tr(4) = tr(QBQ™") = tr(QQ ' B) = tr(B),

where x is by Exercise 13 of Section 2.3.

Exercise 2.5.13: Let V be a finite dimensional vector space over a field F,
and let 8 = {x1,...x,} be an ordered basis for V. Let @ be an n x n invertible
matrix with entries from F'. Define

n

) :ZQijxi for 1 <j <n,

i=1

and set ' = {«}, ...}, }. Prove that (' is a basis for V and hence that @ is the
change of coordinate matrix changing (’-coordinates into S-coordinates.



Solution: Let us define the following matrices:

A= o1 22 ... z | A= 2 24 ... 2, |,
L b

where the z;’s and x;v’s are columns of A and A’, respectively. Then our as-

sumption can be translated into the language of matrix multiplication:
A = QA.

We notice that since the columns of A make up a basis (hence are linearly
independent) we see that A is invertible. Therefore A’ is also an invertible
matrix, since it’s the product of two invertible matrices. Therefore the columns
of A" are linearly independent, implying that 3’ makes up a basis for V' (since
there are n vectors). By construction, @ is the change of coordinates matrix.



