
Math 115a: Selected Solutions to HW 5

December 5, 2005

Exercise 2.4.4: Let A and B be n × n invertible matrices. Prove that AB is
invertible and (AB)−1 = B−1A−1.

Solution: Let A and B be invertible n× n matrices. Then

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = A(IA−1) = AA−1 = I.

Exercise 2.4.5: Let A be invertible. Prove that At is invertible and (At)−1 =
(A−1)t.

Solution: In proving that (At)−1 = (A−1)t, all we need to do is to verify that it
is both a left inverse as well as a right inverse:

(At)(A−1)t ∗= (A−1A)t = (In)t = In,

where ∗ is a standard property of the transpose operator. Similarly,

(A−1)t(At) = (AA−1)t = (In)t = In.

Therefore At is invertible and we have verified what its inverse is.

Exercise 2.4.10: Let A and B be n× n matrices such that AB = In.
(a) Use Exercise 9 to conclude that A and B are invertible.
(b) Prove A = B−1 (and hence B = A−1).
(c) State and prove analogous results for linear transformations defined on finite-
dimensional vector spaces.

Solution:
(a) By Exercise 9, if AB is invertible, then so are A and B. Clearly AB = In is
invertible. Therefore our conclusion follows immediately.
(b) We need to show that A = B−1, which means that AB = BA = In. AB = In

is given to us by assumption, so it suffices to show BA = In: Multiplying A on
the right of In = AB, we get

A = InA = ABA.
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Since A is invertible, there exists A−1. Therefore we can multiply on the left by
A−1 to get

A−1A = A−1(ABA) = (A−1A)BA = InBA = BA.

Reducing A−1A = In, and we get our conclusion.
(c) Claim: Let V be a n-dimensional vector space over F.If S, T are linear op-
erators on V such that ST : V → V is an isomorphism, then both S and T are
isomorphisms.

Proof: Suppose S, T are linear operators on V such that ST is an isomorphism.
Let β = {β1, β2, ..., βn} be an ordered basis for V . Let A and B be the matrix
representation of S and T , respectively, using β:

A = [S]β , B = [T ]β .

Then [ST ]β = AB. Since ST is an isomorphism, AB is an invertible matrix.
By part (a), both A and B are invertible. Finally, this implies that both S and
T are isomorphisms; this completes our proof. Exercise 2.4.17: Let V and W
be finite-dimensional vector spaces and T : V → W be an isomorphism. Let V0

be a subspace of V .

(a) Prove that T (V0) is a subspace of W .
(b) Prove that dim (V0) = dim(T (V0)).

Solution:

(a) Let c ∈ F and w1, w2 ∈ T (V0). We need to show that cw1 +w2 ∈ T (V0). Let
v1, v2 ∈ V0 such that T (vi) = wi. Since V0 is a subspace of V , it cv1 + v2 ∈ V0.
Therefore T (cv1 + v2) = cT (v1) + T (v2) = cw1 + w2 ∈ T (V0). Finally, since
T (0) = 0 ∈ T (V0) we are done.

(b) Let us define T
∣∣
V0

: V0 → T (V0) to be simply the restriction of T to
the domain V0. Since T is a isomorphism, N(T ) = {0}. Therefore it follows
that N(T

∣∣
V0

) = {0}. And hence T
∣∣
V0

is injective. By the dimension formula,
dim (V0) = nullity(T

∣∣
V0

) + rank(T
∣∣
V0

) = rank(T
∣∣
V0

) = dim (R(T
∣∣
V0

)) = dim
(T (V0)).

Exercise 2.4.20: Let T : V → W be a linear transformation from an n-
dimensional vector space V to an m-dimensional vector space W . Let β and γ
be ordered bases for V and W , respectively. Prove that rank(T ) = rank(LA)
and that nullity(T ) = nullity(LA), where A = [T ]γβ .

We begin with the following claim: If S : V m → Wm is an isomorphism
and T : Wm → Zn is a linear transformation, then rank(TS) = rank(T ) and
nullity(TS) = nullity (T ) (Note: the superscripts on the vector spaces denote
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dimension).

Sketch of the proof of the claim: Let {z1, ..., zk} be a basis of R(T ). Then there
exists {w1, ..., wk} ⊆ W such that T (wi) = zi. Let {wk+1, ..., wm} be a basis of
N(T ). Then it follows that {w1, ..., wm} is a basis for W (prove this). Since S
is an isomorphism between V and W , it is injective and surjective. Therefore
there exists {v1, ..., vm} ⊆ V such that S(vi) = wi. Furthermore, {vk+1, ..., vm}
is a basis for N(TS) (why?) Therefore the R(TS) = span{TS(v1), ..., TS(vk)}
= span{T (w1), ..., T (wk)} = span {z1, ..., zk} = R(T ), and all of these sets of
vectors for bases for their respective vector spaces. Apply dimension to both
sides and we get rank(TS) = rank(T ). Now use the dimension formula to get
nullity(TS) = nullity (T ).

A similar claim goes as follows: Let T : V m → Wn be a linear transforma-
tion and S : Wn → Zn be an isomorphism. Then nullity(ST ) = nullity (T ) and
rank(ST ) = rank(T ).

The proof of this claim is almost the same as the proof of the first claim.

Proof of the Exercise: Using Figure 2.2 we see that LA = φγ ◦ T ◦ φ−1
β . Since

φγ is an isomorphism, by the first claim, rank (φγ ◦ T ◦ φ−1
β ) = rank (T ◦ φ−1

β ).
Since φ−1

β is an isomorphism, by the second claim, rank (T ◦ φ−1
β ) = rank (T ).

Putting all of this together we get the following string of equalities:

rank(LA) = rank(φγ ◦ T ◦ φ−1
β ) = rank(T ).

Proving equality of the nullity is literally the same as that for the rank; simply
replace all occurrences of “rank” with “nullity”.

Exercise 2.5.10: Prove that if A and B are similar n × n matrices, then
tr(A) = tr(B).

Solution: Let Q be the matrix such that A = QBQ−1. Then

tr(A) = tr(QBQ−1) ∗= tr(QQ−1B) = tr(B),

where ∗ is by Exercise 13 of Section 2.3.

Exercise 2.5.13: Let V be a finite dimensional vector space over a field F ,
and let β = {x1, ...xn} be an ordered basis for V . Let Q be an n× n invertible
matrix with entries from F . Define

x′j =
n∑

i=1

Qijxi for 1 ≤ j ≤ n,

and set β′ = {x′1, ...x′n}. Prove that β′ is a basis for V and hence that Q is the
change of coordinate matrix changing β′-coordinates into β-coordinates.
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Solution: Let us define the following matrices:

A =

 | | | |
x1 x2 . . . xn

| | | |

 A′ =

 | | | |
x′1 x′2 . . . x′n
| | | |

 ,

where the xi’s and x′j ’s are columns of A and A′, respectively. Then our as-
sumption can be translated into the language of matrix multiplication:

A′ = QA.

We notice that since the columns of A make up a basis (hence are linearly
independent) we see that A is invertible. Therefore A′ is also an invertible
matrix, since it’s the product of two invertible matrices. Therefore the columns
of A′ are linearly independent, implying that β′ makes up a basis for V (since
there are n vectors). By construction, Q is the change of coordinates matrix.
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