Math 115a: Selected Solutions for HW 4

Paul Young

November 5, 2005

Exercise 2.2.2bc: Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For each linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, compute $[T]^{\gamma}_{\beta}$.

b) $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (2a_1 + 3a_2 - a_3, a_1 + a_3)$ c) $T : \mathbb{R}^3 \to \mathbb{R}$ defined by $T(a_1, a_2, a_3) = 2a_1 + a_2 - 3a_3$.

Solution: b)

T(1,0,0) = (2,1)
T(0,1,0) = (3,0)
T(0,0,1) = (-1,1)
$[T]^{\gamma}_{\beta} = \left(\begin{array}{ccc} 2 & 3 & -1 \\ 1 & 0 & 1 \end{array}\right)$
T(1,0,0) = 2
T(0, 1, 0) = 1
T(0,0,1) = -3
$[T]^{\gamma}_{\beta} = \left(\begin{array}{cc} 2 & 1 & -3 \end{array} \right).$

and therefore

and therefore

c)

Exercise 2.2.14: let $V = P(\mathbb{R})$, and for $j \ge 1$ define $T_j(f(x)) = f^{(j)}(x)$, where $f^{(j)}(x)$ is the *j*th derivative of f(x). Prove that the set $\{T_1, T_2, ..., T_n\}$ is a linearly independent subset of $\mathcal{L}(V)$ for any positive integer *n*.

Solution: Let n be arbitrary. Let $a_1, a_2, ..., a_n$ be scalars such that

$$a_1T_1 + a_2T_2 + \dots + a_nT_n = 0.$$

(We note that the above equality is between two linear transformations in $\mathcal{L}(V)$, where the RHS is the zero linear transformation.) This means that whatever we decide to evaluate on both sides should yield equal elements (in $P(\mathbb{R})$). So consider the polynomial x^n . On one hand,

$$(a_1T_1 + a_2T_2 + \dots + a_nT_n)(x^n) = a_1T_1(x^n) + a_2T_2(x^n) + \dots + a_nT_n(x^n) = a_1c_1x^{n-1} + a_2c_2x^{n-2} + \dots + a_nc_n \in P(\mathbb{R}).$$

where $c_j = \prod_{i=0}^{j-1} (n-i)$. We see that this is a polynomial of degree n-1. On the other hand, if we evaluate the right hand side, we get

$$0(x^n) = T_0(x^n) = 0 \in P(\mathbb{R}).$$

Therefore

$$a_1c_1x^{n-1} + a_2c_2x^{n-2} + \dots + a_nc_n = 0$$

as polynomials. This implies $a_i c_i = 0$ for all *i*. However for all *i*, since $c_i \neq 0$ this implies that $a_i = 0$. Therefore we have proven linear independence. (Note: You could have also done this problem via induction on *n*, but that's another story.)

Exercise 2.2.16: Let V and W be vector spaces such that $\dim(V) = \dim(W)$, and let T: V \rightarrow W be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

Solution: First let dim(N(T))=k. By the dimension formula this implies that dim(R(T))=n-k. Let $\{\beta_1, \beta_2, ..., \beta_k\}$ be a basis for the subspace N(T). Now let $\gamma_{R(T)} = \{\gamma_{k+1}, \gamma_{k+2}, ..., \gamma_n\}$ be a basis for the subspace, R(T); we note that this set has n-k elements. Since each γ_i is a member of R(T), there exists $\beta_i \in V$ such that $T(\beta_i) = \gamma_i$, where $k+1 \leq i \leq n$. Since $\{\gamma_{k+1}, ..., \gamma_n\}$ is linear independent, so is $\{\beta_{k+1}, ..., \beta_n\}$ (why?)

Before constructing β , let us first show that for $\{\beta_{k+1}, ..., \beta_n\}$ is linearly independent from all the vectors in $\{\beta_1, ..., \beta_n\}$: Suppose for the sake of contradiction that β_j not linearly independent from the vectors in $\{\beta_1, ..., \beta_n\}$. This means that for any $j \in \{1, ..., k\}$, we can write β_j as a linear combination of vectors in $\{\beta_1, ..., \beta_n\}$. So

$$\beta_j = \sum_{l=1}^k a_l^j \beta_l$$
 for scalars a_l^j .

Applying T on both sides we get:

$$0 = \mathbf{T}(\beta_j) = \mathbf{T}\left(\sum_{l=1}^k a_l^j \beta_l\right) = \sum_{l=1}^k a_l^j \mathbf{T}(\beta_l) = \sum_{l=1}^k a_l^j \gamma_l$$

where the first equality comes from the fact that $\beta_j \in N(T)$ for $1 \le j \le k$, and the last equality comes from our definition of the β_l 's, where $k + 1 \le l \le n$. By linear independence of $\{\beta_1, ..., \beta_k\}$ [it's a basis for N(T)] we conclude that all of the coefficients a_l^j equal to zero. Therefore we have the following:

$$\beta_j = \sum_{l=1}^k a_l^j \beta_l = \sum_{l=1}^k 0 \cdot \beta_l = 0$$

which contradicts β_j being a member of $\{\beta_1, ..., \beta_k\}$, a linearly independent set. Therefore β_j is linearly independent from $\{\beta_1, ..., \beta_k\}$, for $k + 1 \le j \le n$.

We are now in the position to construct the bases β and γ . First we construct β : define the ordered basis $\beta = \{\beta_1, \beta_2, ..., \beta_n\}$, simply by putting all the β 's into one set, while adhering to the numerical order of the indices.

We now construct γ : Since $\gamma_{R(T)}$ is a linearly independent subset of W, we can extend this set to a basis via the Replacement Theorem. Therefore we construct the ordered basis $\gamma = \{\gamma_1, ..., \gamma_k, \gamma_{k+1}, \gamma_{k+2}, ..., \gamma_n\}$ where $\gamma_1, ..., \gamma_k$ were arbitrarily chosen from W to complete the basis. Then we have the following matrix:

$$[\mathbf{T}]^{\gamma}_{\beta} = \left(\begin{array}{c|c} A & B \\ \hline C & I \end{array}\right)$$

where A is the $k \times k$ zero matrix, B is the $(n - k) \times k$ zero matrix, C is the $k \times (n - k)$ zero matrix, and I is the $(n - k) \times (n - k)$ identity matrix. Clearly this matrix is diagonal.