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Exercise 2.1.3: Prove that T is a linear transformation, and find bases for
both N(T ) and R(T ). Then compute the nullity and rank of T , and verify the
dimension theorem. Finally, use the appropriate theorems in this section to
determine whether T is one-to-one or onto: Define T : R2 → R3 by

T (a1, a2) = (a1 + a2, 0, 2a1 − a2)

Solution: We first prove that T is a linear transformation. Let x = (x1, x2), y =
(y1, y2) ∈ R2 and let c ∈ R.

T (cx + y) = T (c(x1, x2) + (y1, y2))
= T (cx1 + y1, cx2 + y2)
= ((cx1 + y1) + (cx2 + y2), 0, (2(cx1 + y1)− (cx2 + y2))
= c(x1 + x2, 0, 2x1 − x2) + (y1 + y2, 0, 2y1 − y2)
= cT (x1, x2) + T (y1, y2),

and hence T is linear. Next we figure out what N(T ) and R(T ) look like. Let
x = (x1, x2) ∈ N(T ). Then

0 = T (x1, x2) = (x1 + x2, 0, 2x1 − x2) →
x1 + x2 = 0, 2x1 − x2 = 0 →
x1 = 0, x2 = 0.

Therefore we conclude that N(T ) = {0}, so that the basis for N(T ) would be
{0}. We now look at the image space. Generally, what we do is take a basis
of the domain, and then transform each of these basis elements by T to see
what we get. More specifically, let β = be the canonical basis for R2– that is,
β = {(1, 0), (0, 1)}. Then

T (1, 0) = (1, 0, 2)
T (0, 1) = (1, 0,−1)

and hence R(T ) = span({(1, 0, 2), (1, 0,−1)}). Since these two vectors are lin-
early independent, we conclude that this is actually a basis for R(T ). Therefore
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after computing N(T ) and R(T ), we conclude that nullity(T ) = dim(N(T )) =
0 and rank(T ) = dim(R(T )) = 2. This is clearly consistent with the dimension
formula:

dim(R2) = nullity(T ) + rank(T )
2 = 0 + 2.

Lastly, since N(T ) = {0}, by theorem 2.4 T is injective. Now since the range
space is R3, which is larger in dimension than that of the domain space, we
conclude that T cannot be onto.

Exercise 2.1.9ace: In this exercise, T : R2 → R2 is a function. For each
of the following parts, state why T is not linear.
(a) T (a1, a2) = (1, a2)
(c) T (a1, a2) = (sin a1, 0)
(e) T (a1, a2) = (a1 + 1, a2)

Solution: (a) Fails under scalar multiplication when the scalar is 0. (c) Fail
addition for practically every pair of vectors. (e) Fails under scalar multipli-
cation when the scalar is 2. (Note: There may be other reasons why these
functions fail to be linear. I only picked out the most obvious reasons.)

Exercise 2.1.14c: Let V and W be vector spaces and T : V → W be lin-
ear. Suppose β = {v1, v2, ..., vn} is a basis for V and T is one-to-one and onto.
Prove that T (β) = {T (v1), T (v2), ..., T (vn)} is a basis for W .

Solution: In order to prove that T (β) is a basis, we need to show two things:
T (β) is a linearly independent set and span (T (β)) = W .

L.I.: Let a1, a2, ..., an ∈ F be scalars such that

n∑
i=1

aiT (vi) = 0.

By linearity of T , we may rewrite the left hand side as:

n∑
i=1

aiT (vi) = T

( n∑
i=1

aivi

)
Since T is injective, N(T ) = {0}. Therefore

n∑
i=1

aivi ∈ N(T ) →
n∑

i=1

aivi =
−→
0 .

Since {v1, v2, ..., vn} is a basis for V , it is a linearly independent set. Therefore
the last equality we got implies that ai = 0 for all i. Therefore we’ve proven
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L.I. for T (β).

span (T (β)) = W : Let w ∈ W be arbitrary. Since T is surjective, there ex-
ists v ∈ V such that T (v) = w. We express this v in terms of the basis β:
v = c1v1 + c2v2 + · · ·+ cnvn, where the ci’s are scalars. Therefore we can write
the following expressions:

w = T (v) = T

( n∑
i=1

civi

)
?=

n∑
i=1

ciT (vi)

where ?= is given to us by linearity of T . Looking at what we’ve just done, we
have written w as a linear combination of elements from T (β). Therefore w ∈
span(T (β)). Since w was arbitrarily chosen, W ⊆ span(T (β)). We note that
this is enough to establish equality because span(T (β)) ⊆ R(T ) ⊆ W is given
to us for free. Therefore span (T (β).

This completes our proof.

Exercise 2.1.17: Let V and W be finite-dimensional vector spaces and T :
V → W be linear.
(a) Prove that if dim(V ) < dim(W ), then T cannot be onto.
(b) Prove that if dim(V ) > dim(W ), then T cannot be one-to-one.

Solution:

(a) Suppose for the sake of contradiction that T is onto. Then rank(T ) =
dim(W ). We are given the following chain of relations:

dim(W ) > dim(V ) ∗= nullity(T ) + rank(T )
= dim(V ) = nullity(T ) + dim(W ) →

dim(W ) > nullity(T ) + dim(W )

where ∗= is given to us by the Dimension Formula. But this means that nullity(T )
must be a negative number, which is nonsense. This is our contradiction and
therefore T cannot be onto.

(b) Let us suppose–for the sake of contradiction–that T is injective. Then by
Theorem 2.4, nullity(T ) = dim(N(T )) = 0. Then we are given the chain of
relations:

dim(W ) < dim(V ) ∗= nullity(T ) + rank(T )
= 0 + rank(T ) →

dim(W ) < rank(T ).

3



But this is clearly impossible because R(T ) is a subspace of W and therefore
always has dimension less than or equal to the dimension of W . This is our
contradiction; therefore T is never injective.

Exercise 2.1.18: Give an example of a linear transformation T : R2 → R2

such that N(T ) = R(T ).

Solution: Define T : R2 → R2 such that

T (a1, a2) = (0, a1).

I leave it to the students to verify that N(T ) = span({(0, 1)}) = R(T )

Exercise 2.1.24: Let T : R2 → R2. Include figures for each of the follow-
ing parts.
(a) Find a formula for T (a, b), where T represents the projection on the y-axis
along the x-axis.
(b) Find a formula for T (a, b), where T represents the projection on the y-axis
along the line L = {(s, s) : s ∈ R}.

Solution: I leave it to the students to draw the figures. I’ll only construct
the formulas.

(a) Let v = (v1, v2) ∈ R2. Since R2 = W1 ⊕W2 where W1 = span({(1, 0)}), W2

= span({(0, 1)}), we will write v with respect to this decomposition: v = vx+vy,
such that vx = (v1, 0), vy = (0, v2). Then by the definition of projection on the
y-axis along the x-axis,

T (v) = vy = (0, v2)

(b) Let v = (v1, v2) ∈ R2. Since R2 = W1 ⊕W2 where W1 = span({(1, 1)}), W2

= span({(0, 1)}), we will write v with respect to this decomposition: v = vL+vy,
such that vL = (v1, v1), vy = (0, v2 − v1). Then by the definition of projection
on the y-axis along L,

T (v) = vy = (0, v2 − v1).
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