
Math 115a: Selected Solutions for HW 2

October 15, 2005

Exercise 1.4.10: Show that if

M1 =
(

1 0
0 0

)
, M2 =

(
0 0
0 1

)
, M3 =

(
0 1
1 0

)
,

then the span of {M1,M2,M3} is the set of all symmetric 2 matrices.

Solution: Let M be an arbitrary symmetric 2× 2 matrix; we will denote

M =
(

a b
b d

)
.

Via a rather superficial inspection, we see that

M = aM1 + dM2 + bM3.

Since we’ve written an arbitrary symmetric matrix as a linear combination of
the M ′

is, we conclude that {M1,M2.M3} spans our space in question.

Exercise 1.4.14: Show that if S1 and S2 are arbitrary subsets of a vector
space V , then span(S1 ∪ S2) = span(S1) + span(S2). (The sum of two subsets
is defined in the exercises in Section 1.3).

Solution: In order to prove equality of two sets, we need to prove mutual inclu-
sion.
⊆: Let v ∈ span(S1 ∪ S2). Then v can be written as a linear combination of
vectors in S1 ∪ S2, i.e.

v =
∑

i

aixi +
∑

j

bjyj ,

where ai, bj ∈ F and xi ∈ S1, yj ∈ S2. (We note that the two sums are finite,
although we will not use this fact in this proof.) Since

∑
i aixi ∈ span(S1), and∑

j bjyj ∈ span(S2), we conclude that v ∈ span(S1) + span(S2).

⊇: Let v ∈ span(S1) + span(S2). Then by definition,

v =
∑

i

aixi +
∑

j

bjyj ,
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where ai, bj ∈ F and xi ∈ S1, yj ∈ S2. This is clearly a linear combination of
vectors from S1 ∪ S2. Therefore v ∈ span(S1 ∪ S2).

Exercise 1.5.15: Let S = {u1, u2, ..., un} be a finite set of vectors. Prove that
S is linearly dependent if and only if u1 = 0 or uk+1 ∈ span({u1, u2, ..., uk}) for
some k (1 ≤ k < n)

Proof:
(⇒) Suppose that S is linearly dependent. Then we need to prove that ei-
ther u1 = 0 or there exists some k such that uk+1 ∈ span({u1, u2, ..., uk}). If
u1 = 0, then we are done. So let us suppose that u1 6= 0. Then what we need
to prove is that the second part of the statement must be true: there exists
some k such that uk+1 ∈ span({u1, u2, ..., uk}). The way we approach this is to
proceed via proof by contradiction. Suppose that there is no such k such that
uk+1 ∈ span({u1, u2, ..., uk}). To rephrase, this means that for all k, uk+1 /∈
span({u1, u2, ..., uk}). So we now need to use this assumption repeatedly, as
follows: u2 /∈ span({u1}) implies that {u1, u2} is a linearly independent set.
Similarly, u3 /∈ span({u1, u2}) implies that {u1, u2, u3} is a linearly independent
set. We can continue in this fashion until we get the following final statement:
un /∈ span({u1, u2, ..., un−1}) implies that S = {u1, u2, ..., un} is a linearly de-
pendent set. However, our initial assumption is that S is linearly dependent.
This is our contradiction. Therefore our initial assumption is false; there must
exist some k such that uk+1 ∈ span({u1, u2, ..., uk}).

(⇐) Suppose that u1 = 0 or uk+1 ∈ span({u1, u2, ..., uk}) for some k (1 ≤
k < n). If u1 = 0, then that means 0 ∈ S, which immediately implies that S
is linearly dependent (why?) So suppose that u1 6= 0. This means that there
exists some k such that u1 = 0 or uk+1 ∈ span({u1, u2, ..., uk}). Therefore
T = {u1, u2, ..., uk+1} is a linearly dependent set. Since T ⊆ S, this implies
that S is linearly dependent.

Exercise 1.6.12: Let u, v, w be distinct vectors of a vector space V . Show
that if {u, v, w} is a basis for V , then {u+ v +w, v +w,w} is also a basis for V .

Solution: Let {u, v, w} be a basis for V . Since this is a three element set, we
conclude that the dimension of V must be 3. Looking at {u + v + w, v + w,w},
we see that this is also a three element set. Therefore if we can prove that this
set is either linearly independent or spans V , then we are done (make sure you
understand why this is true). We will show that {u + v + w, v + w,w} is a
linearly independent set. Let a1, a2, a3 ∈ F such that

a1(u + v + w) + a2(v + w) + a3(w) = 0.

We will show that this implies that a1 = a2 = a3 = 0, by rewriting the equality
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as:

0 = a1(u + v + w) + a2(v + w) + a3(w)
= (a1)(u) + (a1 + a2)(v) + (a1 + a2 + a3)(w).

Since {u, v, w} is a basis for V , it is a linearly independent set. Therefore from
the last equality, we can conclude that a1 = a1 + a2 = a1 + a2 + a3 = 0, and
from here we can conclude immediately that a1 = a2 = a3 = 0. Therefore we’ve
proven that {u + v + w, v + w,w} is a linearly independent set. Therefore it is
a basis for V .

Exercise 1.6.20: Let V be a vector space having dimension n, and let S
be a subset of V that generate V .

(a) Prove that there is a subset of S that is a basis for V .
(b) Prove that S contains at least n elements.

Solution:
(a): Let {β1, β2, ..., βn} be a basis for V . Since span(S)=V , each of the βi’s can
be written as a finite linear combination of elements from S. More specifically,

β1 =
∑
i∈I1

a1,isi

β2 =
∑
i∈I2

a2,isi

...
βn =

∑
i∈In

an,isi

where all of the aj,i’s are scalars, and In’s are finite index sets (see the note at
the end of the proof). Let us define the set

J =
n⋃

j=1

Ij

be the finite union of all the index sets. Now consider the subset of the vector
space

T =
⋃
j∈J

sj .

Since T is a set made up of elements from S, T ⊆ S. Since J is a finite index
set, T is also a finite set. Furthermore, we have constructed this set T that
contains elements from S which ”builds” each of the βi’s. Therefore

{β1, β2, ..., βn} ⊆ span (T ) ⊆ span (S) = V

⇒
V = span ({β1, β2, ..., βn}) ⊆ span (span (T )) = span (T ) ⊆ V

⇒ span(T ) = V.
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Since T spans V, and it is a finite set, by the Replacement Theorem (1.10) we
can find a subset of T–call it B–that is a basis for V . It is clear that B is a
subset of S, as it is a subset of T . This finishes our proof.
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