Math 110B Winter 18

HOMEWORK 7 - SOLUTIONS

Problem 8.4.16. Note that this function is just the square of the module: for all $z \in \mathbb{C}^*$, we have $f(z) = |z|^2$. Hence for all $z, w \in \mathbb{C}^*$, we have $f(zw) = |zw|^2 = (|z||w|)^2 = |z|^2|w|^2 = f(z)f(w)$. So f is a homomorphism of groups. Furthermore, if $r \in \mathbb{R}^{**}$, we have $r = f(\sqrt{r})$, so f is surjective.

Problem 8.4.18. Let us start by finding all the normal subgroups of D_4. Denote by r the rotation of angle $\pi/2$. For any reflection s of D_4, we know that r and s generate D_4, and we have $s^2 = r^4 = e$ and $srs = r^{-1}$. Note that since r, s generate D_4, to check that a subgroup H is normal it suffices to check that $rHr^{-1} \subseteq H$ and $sHs^{-1} \subseteq H$. There are two types of subgroups of D_4:

- those contained in $\langle r \rangle \simeq \mathbb{Z}_4$. By the classification of subgroups of cyclic groups, we know that there exactly 3 of those: $\{e\}$, $\langle r^2 \rangle$, and $\langle r \rangle$. Using the formula $sr^k s = r^{-k}$, it follows that they are all normal. The corresponding quotients are D_4, $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_2.
- those containing a reflection s. Let H be such a subgroup. If $H = \langle s \rangle$, H is not normal because $rsr^{-1} = r^2s \not\subseteq H$. If $H \neq \langle s \rangle$, H contains an element of the form $r^k s$ for $k = 1, 2, 3$. Hence H contains r^k, as we see by multiplying on the right by s. If $k = 1, 3$, $H = D_4$, so H is normal and the corresponding quotient is $\{e\}$. If $k = 2$ and H does not contain r, we have $H = \{e, r^2, s, r^2s\}$. Then H is normal since we have:

$$sr^2s = r^2 \in H, \quad rsr^{-1} = r^2s \in H$$

In that case, the quotient is \mathbb{Z}_2.

In conclusion, the homomorphic images of D_4 are $\{e\}, \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2$ and D_4.

Problem 8.4.21. Let $K = \ker(f)$, we know that K is a normal subgroup G. Since G is simple, we have either $K = G$ or $K = \{e\}$. If $K = G$, we have $\text{Im}(f) = \{e\}$ so $H = \{e\}$ since f is surjective. If $K = \{e\}$, f is injective, since it is also surjective it is an isomorphism.

Problem 8.4.22. (a) The identity element e has order 1, so $e \in K$ and K is not empty. Let $x, y \in K$. Then we have $(xy^{-1})^2 = x^2y^{-2} = e$, the first equality holding since G is abelian. Then we have $o(xy^{-1}) \leqslant 2$, so $xy^{-1} \in K$. Hence K is a subgroup of G.

1
(b) Since G is not empty, we see that H is not empty from its definition. Let $a, b \in H$, we have $a = x^2$ and $b = y^2$ for some $x, y \in G$. Then $ab^{-1} = (xy-1)^2$ since G is abelian, so $ab^{-1} \in H$. Thus H is a subgroup of G.

(c) Consider the map:

$$
\left\{ \begin{array}{ccc}
G & \rightarrow & H \\
x & \mapsto & x^2
\end{array} \right.
$$

Since G is abelian, for all $x, y \in G$ we have $(xy)^2 = x^2y^2$, so f is a homomorphism. Then, from their respective definitions we see that $K = \ker(f)$ and $H = \text{Im}(f)$. It follows from the first isomorphism theorem that $G/K \simeq H$.

Problem 8.4.24. Since $k|n$, the (proof of the) third isomorphism theorem guarantees that the map $\mathbb{Z}_n \rightarrow \mathbb{Z}_k$, $[x]_n \mapsto [x]_k$ is a well defined homomorphism of additive groups. It is actually easy to see that it is a homomorphism of rings from the definition of the multiplication in both rings. It follows that it restricts to a homomorphism of groups between the groups of units.

Problem 8.4.29. We use the third isomorphism theorem : since $k|n$, we have $n\mathbb{Z} \subseteq k\mathbb{Z}$, and so $(\mathbb{Z}/n\mathbb{Z})/(k\mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{Z}/k\mathbb{Z}$, or written with our usual notations $\mathbb{Z}_n/\langle k \rangle \simeq \mathbb{Z}_k$.

Problem 8.4.34. (a) For simplification, for $a, b, c \in \mathbb{Q}$, let $[a, b, c]$ denote the matrix defined the problem. It is clear that G is not empty, as it contains $I_3 = [0, 0, 0]$ for instance. We have:

$$
[a, b, c] [\alpha, \beta, \gamma] = [a + \alpha, \beta + b + a\gamma, c + \gamma] \quad (*)
$$

from which stability under multiplication follows. Using this formula, we can see that $[a, b, c]^{-1} = [-a, ac - b, -c]$. So G is stable by inverse. Hence G is a subgroup of $\text{GL}_3(\mathbb{Q})$, and in particular a group under matrix multiplication.

(b) Using the formula $(*)$ from above, we see that $[a, b, c] \in Z(G)$ if and only if for all $a, \beta, \gamma \in \mathbb{Q}$ we have:

$$
\left\{ \begin{array}{ccc}
a + a &=& a + a \\
\beta + a\gamma + b &=& b + ac + \beta \\
b + \beta &=& \beta + b
\end{array} \right.
$$

which simplify into the unique condition $a\gamma = ac$. This holds for all a, γ if and only if $a = c = 0$. It follows that $Z(G) = \{[0, b, 0], b \in \mathbb{Q}\}$.

From this description we see that we have a bijection $\mathbb{Q} \rightarrow Z(G), b \mapsto [0, b, 0]$. Furthermore, $(*)$ shows that this is a homomorphism of groups. Hence $Z(G)$ is isomorphic to \mathbb{Q}.

(c) Consider the map:
\[
\begin{array}{ccc}
G & \rightarrow & Q \times Q \\
[a,b,c] & \mapsto & (a,c)
\end{array}
\]
By (\ast), this is a homomorphism of groups. This is clearly surjective. By (b), the kernel of this homomorphism is C. Hence by the first isomorphism theorem, \(G/C \cong Q \times Q \).

Problem 8.4.41. (a) Let \(a \in G \). Then for all \(b \in G \), we have:
\[
(f_a \circ f_{a^{-1}})(Kb) = f_a(Kba^{-1}) = Kba^{-1}a = Kb
\]
Hence \(f_a \circ f_{a^{-1}} = \text{id} \). Applying this to \(a^{-1} \) gives \(f_{a^{-1}} \circ f_a = \text{id} \) since \((a^{-1})^{-1} = a \). Thus \(f_a \) is a permutation of \(T \).

(b) Let \(g, h \in G \), and \(b \in G \). Then we have:
\[
(f_g^{-1} \circ f_{h^{-1}})(Kb) = f_{g^{-1}}(Kbh^{-1}) = Kbh^{-1}g^{-1} = Kb(gh)^{-1} = f_{(gh)^{-1}}
\]
Thus \(\phi(gh) = \phi(g) \circ \phi(h) \), and \(\phi \) is a homomorphism of groups.

If \(g \in \ker(\phi) \), then in particular we have \(f_{g^{-1}}(K) = K \). This gives \(K_{g^{-1}} = K \), thus \(g \in K \). So \(\ker(\phi) \subseteq K \).

(c) Assume \(K \) is normal, and let \(k \in K \). Then for all \(b \in G \) we have \(bk^{-1}b^{-1} \in K \), so \(K = Kbk^{-1}b^{-1} \). It follows that \(Kbk^{-1} = Kbk^{-1}b^{-1}b = Kb \), so \(\phi(k)(Kb) = Kb \). Hence \(\phi(k) = \text{id} \). So we have \(K = \ker(\phi) \).

(d) Taking \(K = \{e\} \), the previous result tells us that we have an injection of \(G \) into \(A(G) \), which is exactly the statement of Cayley’s theorem.

Problem 8.4.42. (a) Consider the (unique) subgroup \(N \) of \(S_3 \) generated by an element of order 3. Since it is cyclic, it is abelian. Since it has index 2, it is normal, with quotient \(S_3/N \cong \mathbb{Z}_2 \) abelian. Hence \(S_3 \) is metabelian.

(b) Let \(G \) be a metabelian group, and \(H \) a normal subgroup of \(G \). We want to prove that \(G/H \) is metabelian. Let \(N \) be a normal subgroup such that \(N \) and \(G/N \) are abelian. Let \(K \) be the image of \(N \) in \(G/H \). This is an abelian subgroup of \(G/H \) since it is the image of an abelian subgroup by a homomorphism. It is also normal because it is the image of a normal subgroup by a surjective homomorphism (as shown in previous homework).

By the third isomorphism theorem, \((G/H)/K \) is a quotient of \(G/N \), so in particular it is abelian. Hence \(G/H \) is metabelian.

(c) Let \(G \) be a metabelian group, and \(H \) a normal subgroup of \(G \). We want to prove that \(H \) is metabelian. Let \(N \) be a normal subgroup such that \(N \) and \(G/N \) are abelian. Let \(K = H \cap N \), then \(K \) is an abelian normal subgroup of \(H \). Furthermore, by the second isomorphism theorem, \(H/K \) is a subgroup of \(G/N \), so in particular it is abelian. Hence \(H \)
is metabelian.

Problem 7.5.1. (a) (173). (b) (1245789). (c) (1476283). (d) (35798).

Problem 7.5.9. (a) 12. (b) 60. (c) 10!/2.

Problem 7.5.11. The elements of A_4 are:
- the identity element, which has order 1.
- the 8 3-cycles, which have order 3.
- the 3 products of two disjoint 2-cycles, which have order 2.

Problem 7.5.12. (12)(34) = (123)(234).

Problem 7.5.13. The decomposition of α as a product of disjoint cycles is $\alpha = (12)(34)(56789(10))$, so by theorem 7.25 it has order $[2, 2, 6] = 6$.

Problem 7.5.14. The decomposition of β as a product of disjoint cycles is $\beta = (1236784)(59(10))$, so by theorem 7.25 it has order $[7, 3] = 21$.