
RELATIONS AMONG FIXED POINTS

KEFENG LIU

Let M be a smooth manifold with a circle action, and {P} be the
fixed point sets. The problem I want to discuss in this paper is how to
get the topological information of one relatively complicated fixed point
set, say P0, from the other much simpler fixed points. Such problems
are interesting in symplectic geometry and geometric invariant theory,
especially in the study of moduli spaces. In this paper I derive several
very simple integral formulas which express integrals over P0 in terms
of integrals over the other fixed point sets P ’s. As applications, I
use these formulas to give an explicit expression for integrations of
cohomology classes on the moduli space of higher rank stable bundles
over a Riemann surface in terms of integrals over lower rank moduli
spaces. In rank 2 case, these formulas express the integrals over the
moduli spaces in terms of integrals over symmetric products of the
Riemann surface.

These formulas are also useful in computing the changes of integrals
on the quotient manifolds when the polarization is altered in geomet-
ric invariant theory [DH], [Th], or when the level of moment map is
changed in sympletic geometry [GS]. On the other hand, recently Pid-
strigach and Tyurin [PT] have constructed a circle action on the mod-
uli space of solutions of a rank 2 Seiberg-Witten equation whose fixed
point sets are respectively given by the moduli spaces of self-dual con-
nections and a rank 1 Seiberg-Witten equation. This indicates that
our formulas may be useful in relating the Donaldson invariants to the
Seiberg-Witten invariants.

In §5 we also derive a similar formula in equivariant K-theory which
relates the theorem in [GS1] about geometric quantization commuting
with symplectic reduction to the Verlinde formula. Note that for rank
2 case, the formulas we derived can be used to recover many reasults
about moduli spaces of vector bundles on a Riemann surface, such as
the Verlinde formula and the Newstead conjectures about the vanishing
of Chern classes and Pontryagin classes.

By using the same idea we can derive similar formulas on noncompact
manifolds, such as the Hitchin moduli spaces of vector bundles with
Higgs fields on a compact Riemann surface. We note that, when the
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rank and degree of the vector bundle are prime to each other, the
Hitchin moduli spaces are smooth complete symplectic manifolds. In
§6 we write down some localization formulas for Hitchin’s moduli spaces
and indicate their proofs.

In this note, I restrict myself to the derivation of the theoretical
formulas. In a forthcoming paper I will carry out some actual compu-
tations.

I would like to thank S. Chang, S. Martin, W. Zhang for some help-
ful discussions. I have also benefited a lot from the MIT symplectic
geometry seminar. This work has been partially supported by an NSF
grant.

1. Integral formulas

We first assume the manifold M is compact and without bound-
ary. Let V be the Killing vector field generated by the circle action,
let dt = d − tiV where iV is the contraction operator and t is a com-
plex parameter, be the differential for equivariant cohomology H∗

S1(M).
Consider an even degree equivariant cohomology class which can be
written in the form

η = η2k + tη2k−2 + · · ·+ tkη0

where ηj is a smooth j-form on M with the relations

dηj−2 = iV ηj, j = 2, 4, · · · , 2k.

We call 2k the degree of η and denote by deg η.
Let BP be a small invariant neighborhood around P and UP =

∂BP /S1. The normal bundle νP of P in M is decomposed into sum of
complex line bundles according to the circle action:

νP = L1 ⊕ · · · ⊕ Ll

where 2l is the codimension of P in M . The generator g of S1 acts on
Lj by gmj . It is easy to see that UP is a fiber bundle over P . The fiber is
weighted projective space P (m1, · · · , ml). Recall that the equivariant
Euler characteristic class of νP is given by

et(νP ) =
l∏

j=1

(c1(Lj) + mjt)

where c1(Lj) is the first Chern class of Lj. Let i : ∂BP → M be the
inclusion map. Since

H∗
S1(∂BP ) ∼= H∗(UP ),
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we have the standard homomorphism

ρP : H∗
S1(M) → H∗

S1(∂BP ) ∼= H∗(UP )

induced by the inclusion i. We will use iP to denote the inclusion of P
in M and i∗P denote the pull-back map in cohomology.

Now let P0 be one of the fixed point set. Take out an invariant small
neighborhood B0 of P0. Let U0 = ∂B0/S

1 and ρP0 be the homomor-
phism from HS1(M) to H∗(U0). Let

η = η2k + tη2k−2 + · · ·+ tkη0

be equivariant with deg η < n where n is the dimension of M . Then
our basic formulas are

Formula 1:

∫
U0

ρP0(η) = −
∑

P 6=P0

rest=0

∫
P

i∗P η

et(νP )

where the rest=0 means taking the coefficient of t−1, and

Formula 2: ∫
U0

ρP0(η) =
∑

P 6=P0

∫
UP

ρP (η).

These two formulas will be our basic tools to study the relations
among fixed points. They are very useful in the following situation:

Let E be an equivariant vector bundle on M , then it descends to
U0 and UP by quotient, the equivariant characteristic classes of E, say
cr(E)t, is mapped by ρP0 and ρP to the non-equivariant characteris-
tic classes of the corresponding quotient bundles EP0 , EP over U0, UP

correspondingly. That is, we have

ρP0(cr(E)t) = cr(EP0) and ρP (cr(E)t) = cr(EP )

respectively.
To prove the above formulas, we first note that if deg η < n, then

from the localization formula [AB], we get

∑
P

∫
P

i∗P η

et(νP )
= 0.
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Next we look at each term on the right hand side. Fix an S1-invariant
metric g on M and consider BP . Note that there is no fixed point on
the bounadry ∂BP , so

∂BP → UP = ∂BP /S1

is a circle bundle.

Lemma: Assume deg η < n, where n is the dimension of M , then∫
UP

ρP (η) = −rest=0

∫
P

i∗P η

et(νP )

Proof: The proof is easy. Let

θ = g(V, ·)/g(V, V ), β = θ/dtθ

be the Bott forms, then θ and β are well defined outside P . Note
that dtβ = 1. Choose a small ε neiborhood Bε(P ) of P inside BP and
integrate η over BP . Apply Stokes theorem, since deg η < n,

∫
BP

η = 0,
we have

0 =

∫
BP

η = limε→0

∫
BP− Bε(P )

dt(ηβ)

= −limε→0

∫
∂Bε(P )

ηβ +

∫
∂BP

ηβ.

The limit of the first term in the last sum was derived by Bott:

−
∫

P

i∗P η

et(νP )
.

For the second term, note that θ is actually a connection form for
the principal bundle ∂BP → UP , so dtθ = F − t is the equivariant
curvature and the integral is given by∫

∂BP

ηθ/(F − t) =

∫
UP

ρP (η)/(F − t).

Since
1/(F − t) = −t−1(1 + Ft−1 + FΛFt−2 + · · · ),

take the coefficients of t−1 of both sides, we get the lemma. 2

Formula 1 is obtained by applying the Lemma to P0, while Formula
2 to each the of the fixed point sets P ’s.

Obviously the above discussion equally applies to manifolds with
boundary. Let ∂M be the boundary. Assume the action has no fixed
point on ∂M and let M0 = ∂M/S1. Let
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ρ : H∗
S1(M) → H∗(M0)

be the induced map by the inclusion of ∂M ⊂ M and the isomorphism

H∗
S1(∂M) ∼= H∗(M0).

Let η ∈ H∗
S1(M) be an element of degree less than the dimension of

M . We then have∫
U0

ρ0(η) =
∑

P 6=P0

∫
UP

ρP (η) +

∫
M0

ρ(η).

For an equivariant vector bundle E as above, let E0 be the descended
bundle on M0, then ρ(cr(E)t) = cr(E0). In this case the above formula
takes a much simpler form

Formula 3:∫
U0

cr(EP0) =
∑

P 6=P0

∫
UP

cr(EP ) +

∫
M0

cr(E0).

In the above formulas we always take equivariant differential forms
of degree less than the dimension of M . Note that by this we do not
lose any topological information of the fixed point sets.

It is easy to generalize the above formulas to manifolds with quotient
singularities. One simply replaces the integrals by the corresponding
integrals over V -manifolds.

2. Simple examples.

We first look at some straightforward applications of the integral
formulas in §1.

A. Let S1 act on Cn by

eit(z1, · · · , zn) = (eim1tz1, · · · , eimntzn).

The only fixed point is the origin 0. Consider a small ball B around
the origin, then the quotient ∂B/S1 is a weighted projective space
P (m1, · · · , mn).

For any differential form η = η2k+tη2k−2+· · ·+tkη0 on Cn with dtη =
0 and degree less than 2n, let ρ(η) be its image in H∗(P (m1, · · · , mn)),
then cut out a small neighborhood of the origin and apply the above
formulas to get
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∫
P (m1,··· ,mn)

ρ(η) = −rest=0
η0(0)

tn−k
∏n

j=1 mj

which is zero except when k = n−1. It is easy to see that every element
in H∗(P (m1, · · · , mn)) is in the image of ρ.

B. Consider the following S1-action on CP n:

[z0, · · · , zn] → [z0, · · · , zn−1, e
imtzn]

where eit ∈ S1 is the generator and m is an integer. The fixed point
sets are P = [0, · · · , 0, 1] and CP n−1. Let η = η2k + tη2k−2 + · · ·+ tkη0

on CPn with dtη = 0 and degree less than 2n. Note that for a small
neiborhood B of CP n−1, ∂B is a circle bundle and ∂B/S1 = CP n−1.
Let ρ(η) be the image of η in H∗(CP n−1), we then get∫

CP n−1

ρ(η) = −rest=0
tkη0(P )

(−mt)n

which is 0 if k 6= n− 1 and is (−1)n+1η0(P )/mn if k = n− 1.
C. Let M be a compact smooth symplectic manifold of dimension

2n, with a Hamiltonian circle action. Let

µ : M → R

be the moment map. For two points a < b ∈ R, let µ−1(a), µ−1(a) be
their level sets. Assume the S1 acts on these two level sets freely and
let Ma, Mb be their corresponding symplectic quotients. Let ρa, ρb be
the homomorphisms as defined in last section. Then it easily follows
from Formula 3 that, for any η ∈ HS1(M) with deg η < 2n∫

Mb

ρb(η)−
∫

Ma

ρa(η) = −
∑

P

rest=0

∫
P

i∗P η

et(νP )

=
∑

P

∫
UP

ρP (η)

where {P} are the fixed point sets lying between the two level sets
µ−1(a) and µ−1(b).

¿From [GS] we know that Ma and Mb are related by a series of flips.
The above formulas tell us how the integrals on the two symplectic
quotients are related to each other. From [DH] and [Th] we know that,
when the polarizations change, the geometric invariant theory quotient
also changes by flips. From the abelian model in [Th], we know that the
above formula applies to this situation. Note that each UP in the above
formula is still symplectic manifold with induced symplectic form from
that of M .
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One interesting case is to take η = ωn−1
t = (ω + tµ)n−1 and to apply

the above formula. Let ωP be the induced symplectic form on UP , we
have

∫
Mb

ωn−1
b −

∫
Ma

ωn−1
a = −

∑
P

rest=0

∫
P

i∗P ωt
n−1

et(νP )
=

∑
P

∫
UP

ωn−1
P

where ωa, ωb are the induced symplectic forms on Ma and Mb respec-
tively. This gives us a formnula expressing the change of symplectic
volume for the symplectic quotients at different levels of the moment
map.

3. Moduli spaces: rank 2

We first review the construction in [BDW]. Let S be a compact
Riemann surface and E a rank 2 complex vector bundle on it with
fixed determinant L. A holomorphic structure on E will be denoted
by ∂̄E. For some Hermitian metric H, let us consider the τ -vortex
equation introduced by Bradlow

√
−1ΛF∂̄E ,H +

1

2
φ⊗ φ∗ =

τ

2
I.

Here F∂̄E ,H is the curvature of the torsion free connection of H, and
ΛF∂̄E ,H is the contraction against the Kahler form on S. Also φ is

a holomorphic section with respect to ∂̄E, φ∗ its Hermitian adjoint;
φ ⊗ φ∗ is considered as a section of Ω0(End E) and I is the identity
section.

It is proved by Bradlow that this equation has solution iff τ is in the
following admissible range

d

2
≤ τ ≤ d

where d > 4g − 4 is the degree of L. A value τ is called generic if it
is not an integer in [d/2, d]. A pair (∂̄E, φ) for which the equation has
a solution H will be called a (semi-)stable pair. The gauge group acts
on a pair by

g(∂̄E, φ) = (g∂̄Eg−1, gφ)

In [BDW], it is proved that the moduli space of the solutions for
some τ to the above vortex equation is a compact Hausdorff topological
manifold B with a circle action
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eit(∂̄E, φ) = (∂̄E, eitφ).

The fixed point sets consists of pairs with the following properties:
1) When φ = 0. This is the moduli space of rank 2 semistable

bundles M(2, L) with fixed determinant L.
2) When E splits into sum of line bundles F ⊕ L⊗ F−1 where F is

uniquely determined by its section φ. In fact the zero points of φ is a
divisor of degree d − j which is just F . This gives us the symmetric
product of the Riemann surface, S(d−j) for j an integer lying in (d/2, d),
consisting of the divisors of φ which are considered as points in S, as
the fixed points.

The moment map of the circle action is given by f : B → R such
that

f(∂̄E, φ) =
1

8π
||φ||2L2 +

d

2
.

Its image precisely lies in τ ∈ [d/2, d]. All sigularities of B in this
rank 2 case lie inM(2, L). The circle action on the level set of a generic
value τ in the image is free with symplectic quotient

Bτ = f−1(τ)/S1

which is a Kahler manifold.
We can choose an invariant neighborhood B around M(2, L) such

that both B − B and ∂B are smooth. Let UM = ∂B/S1 then UM
is a projective bundle over the smooth part of M. By applying our
formulas to B, we get, for deg η < d + 2g − 2 = dim B,∫

UM

ρ0(η) = −
∑

j

rest=0

∫
S(d−j)

i∗η

et(νj)

where νj is the normal bundle of S(d−j) in B. Also

ρ0 : H∗
S1(B) → H∗(UM)

is the map as introduced in §1.
The νj’s in the above formula have the following explicit descriptions.

Each of them is a direct sum of two vector bundles on S(d−j):

νj = W+
j ⊕W−

j

where the circle acts on W+ by multiplications of e2it, on W− by e−2it.
More explicitly, on S(d−j) the universal pair (V, φ) on B splits into direct
sum O(D)⊕L(−D) with D a divisor of degree d− j. The circle action
on O(D) is given by multiplication by eit. Let π : S × S(d−j) → S(d−j)
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be the projection and still let D denote the universal divisor, then from
[BDW], [Th1] we have

W−
j = (R0π)ODL(−D), W+

j = (R1π)L−1(2D).

If we assume the degree of E, d > 4g− 4 is odd, let E be a universal
bundle over S×M(2, L), then UM is just the projective bundle P (π!E)
where π is the projection

π : S ×M(2, L) →M(2, L).

It is easy to see that V , when reduced to UM, is π∗1E ⊗ O(1) where
π1 : S × P (π!E) → S ×M(2, L) is the projection and O(1) is the
anti-tautological line bundle on P (π!E).

Let v = c1(O(1)), then any element in H∗(UM) can be written in
the form

b = b0 + b1v + · · ·+ bmvm

where m is the dimension of the fiber and bj’s are cohomology classes
in H∗(M(2, L)). We then have∫

UM

b =

∫
M(2,L)

bm

which reduces integrals on UM to integrals on M(2, L).
Since the cohomology classes of M(2, L) are given by the Chern

classes of universal bundles, we can take the combinations of the equi-
variant characteristic classes of p!(V

∗ ⊗ V ) and p!V where

p : S × B → B
is the natural projection, to get all possible characteristic classes of
UM. By using Formula 3, we get an integral formula on M in terms
of the integrals on the symmetric products of the Riemann surface.
While restricted to the symmetric products, the vector bundle splits
into sums of line bundles. In this sense we can say that our formula
’abelianizes’ the integrals on M. For example take

η = c1(p!(V
∗ ⊗ V ))n

t c1(p!V )m
t

where n = 3g − 3 and n + m = dimB − 1, we get the volume of B.
Note that

ρ0(c1(p!V )t) = c1(π!E) + v, ρ0(c1(p!(V ⊗ V )t) = −c1(T )

where T denotes the tangent bundle of M(2, L). When restricted to
S(d−j) these classes can be easily computed as in §7 of [Th1].

In the even degree case, we still have a surjective homomorphism
from UM to M, which is a projective bundle over the smooth part. By
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deleting the sigularities which will not change the integral, we can still
use the above method to reduce the integrals on UM to integrals on
M(2, L).

Let Uj = P (W+
j ⊕W−

j ) be the weighted projective bundle on S(d−j)as
described above and

ρj : H∗
S1(B) → H∗(Uj)

be the natural map. An equivalent integral formula from Formula 2 is
given by ∫

UM

ρ0(η) =
∑

j

∫
Uj

ρj(η)

which may be more interesting for computations in algebraic geometry.
In fact for any generic value τ , we have an integral formula for the
symplectic quotient Bτ :∫

Bτ

ρτ (η) = −
∑
j>τ

rest=0

∫
S(d−j)

i∗η

et(νj)

where ρτ is the natrual map from the equivariant cohomology of B to
the nonequivariant cohomology of Bτ .

4. Moduli spaces: higher rank

Now consider the semistable pairs for a holomorphic bundle E of
rank r > 2, with fixed determinant L and degree d > r(2g − 2). It is
proved in [BDW] that there is a compact Hausdorff topological space
B parametrizing the solutions of the vertex equation for some τ . There
is also an open set B0 ⊂ B which has a natural Kahler V -manifold
structure. These spaces have the following properties

1) There is an S1-action on B0 which is holomophic and symplectic.
The corresponding moment map f : B0 → R and the action extends
continuously to B.

2) At regular levels, the symplectic quotients are smooth Kahler
manifolds. The singular points of B all lie in the critical levels of f .

3) The fixed point sets of the S1-action on B are moduli spaces
of isomorphism calsses of semistable pairs. Especially one extreme is
M(r, L), the moduli space of holomorphic bundles with rank r and
determinant L; while another extreme is M(r − 1.L).

The extended moment map

f : B → R
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is given by

f((E, φ)) =
||φ||2

4πr
+

d

r
.

The critical levels of f , which we denote by I, are the rational num-
bers τ = p/q in [d/r, d/(r − 1)] with 0 < q < r. Let {Zτ}τ∈I denote
the fixed point sets of the circle action other than M(r, L). Then Zτ

consists of the moduli spaces of semi-stable pairs of lower rank. More
precisely, over Zτ the pair (E, φ) splits into direct sum (Eφ, φ)⊕⊕jEj

where (Eφ, φ) is a semistable pair and the Ej’s are stable bundles each
of which has slope τ .

The Zτ ’s may be singular, but our integral Formula 2 still applies.
In fact we can first choose a neiborhood Dτ around each Zτ such that
on the boundary of Dτ , the S1-action is free and

Uτ = ∂Dτ/S
1

has V -manifold structure. Apply the argument in §1 to B − ∪τ∈IDτ

and an equivariant cohomology class η with deg η < dim B, we get∫
UM

ρ0(η) =
∑
τ∈I

∫
Uτ

ρτ (η).

Here as in the rank 2 case, UM is still a projective bundle over the
smooth part ofM(r, L). Especially if (d, r) = 1, let E be the unviversal
bundle on S ×M(r, L) and

π : S ×M(r, L) →M(r, L)

be the projection, then UM = P (π!E). In general we have a surjective
homomorphism from UM to M(r, L).

The Uτ ’s can also be explicitly written as the weighted projective
bundle P (W+

τ ⊕W−
τ ) over Zτ , where W±

τ are the stable and unstable
bundle of Zτ correspondingly. They can be explicitly described by the
filtration of (E, φ) [BDW].

We then can use the same method as in the rank 2 case to get inte-
grals of cohomology classes onM(r, L). For example assume (r, d) = 1,
and let V be the universal bundle on the smooth part of B and p be
the natural projection

p : S × B → B,

then take
η = c1(p!(V

∗ ⊗ V ))n
t c1(p!V )m

t

with n = dim M(r, L) and m + n = dim B − 1 gives an expression of
the volume integral of M(r, L) in terms of integrals in the neiborhoods
of lower rank moduli spaces.
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Let πτ : Uτ → Zτ be the natural projection, then this formula can
be written as ∫

UM

ρ0(η) =
∑
τ∈I

∫
Zτ

πτ
∗ (ρτ (η))

where πτ
∗ denotes the push-forward in cohomology. To use this formula

for practical computations, we have to study the singularity of B more
carefully.

5. A K-theory formula

In this section we explain a simple observation about the relation
between the multiplicity formula of Guillemin-Sternberg [GS1] and the
Verlinde formula as discussed in [Th1].

Let B be the moduli space given in §3, and KS1(B) be its equivariant
K-group of complex vector bundles. Let

IndS1 : KS1(B) → KS1(pt)

be the equivariant index map which compute the equivariant Riemann-
Roch numbers, the index of ∂̄ ⊗ E of a holomorphic vector bundles E
on B. Then for any holomorphic equivariant vector bundle L on B,
we have the following localization formula in K theory due to Atiyah-
Segal:

IndS1 L =
∑

P

IndP (
i∗L

Λtν
)

where the sum is over the fixed point sets {P}, i∗ is the restriction
map, Λtν denotes the K-theory equivariant Euler class of the normal
bundle of the fixed point set P in B, and IndP is the non-equivariant
index map on P .

Now let L be the determinant line bundle of the universal bundle V
on S × B under the map

p : S × B → B

and k be a positive integer, we have

IndS1 Lk =
∑

j

ajz
mj ∈ KS1(pt)

with z = eit. By [GS1], we know that the multiplicity aj is equal to
IndjLk

j where Indj is the nonequivariant index map on Bj = f−1
k (mj)/S

1
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and Lj is the reduced line bundle on Bj from L. Here fk = kf with f
the moment map given in §3.

Let r = kd/2 for k even and r = [kd/2] + 1 for k and d odd, we then
have

ar = resz=0z
−r−1IndS1 Lk = Ind0 Lk

0

where L0 → UM is the reduced line bundle and Ind0 is the index map on
UM. By combining with the above Atiyah-Segal localization formula,
we get

Ind0 Lk
0 = resz=0z

−r−1
∑
j=0

Indj (
i∗Lk

Λtνj

)

where the sum is over the symmetric products S(d−j) of the Riemann
surface S and Indj is the index map on S(d−j). There is no contribution
from M to the residue which can be easily seen from the fact that the
exponent of the circle action on the normal bundle of M in B is z = eit

and the action on i∗L →M is zr−1. In fact the contribution from M
is

resz=0z
−r−1

∫
M

Td(TM)
zr−1chi∗L∏s

j=1(1− z−1e−xj)

where {xj} are the Chern roots of the normal bundle of M in B,
s = d− g + 1 is the codimension of M and Td(TM) is the Todd class
of M. It is easy to see that when d is larger than 2g − 2 with g > 1,
this expression is zero.

Recall that νj = W+
j ⊕W−

j as in §3 and by definition

Λzνj = ΛzW
+
j ⊗ Λz−1W−

j

where

ΛzW
+
j = 1 + zW+

j + z2Λ2W+
j + · · ·

and Λz−1W−
j is defined in the same way.

The left hand side of the above formula gives us the dimension pre-
dicted by the Verlinde formula [Th1], while the right hand side is a sum
over symmetric products of the Riemann surface whose computation
has been completely carried out in §7 of [Th1]. This simple observation
implies that in this special case the algebro-geometric computations in
[Th1] are basically equivalent to the result in [GS1]: geometric quanti-
zation commutes with symplectic reduction.

Note that it is possible that UM is actually M, but the above discus-
sion still works. The reason is that M is smooth and the Guillemin-
Sternberg multiplicity formula still holds in this case.
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6. Localization on Hitchin moduli

We still let X be a compact Riemann surface of genus g. Let V
be a holomorphic vector bundle of rank n and degree d on X with
(n , d) = 1. Let Φ be a smooth section of End V ⊗K where K is the
canonical bundle of X.

Let A be a connection on V , Consider the moduli spaceH of solutions
of the following Higgs equation introduced by Hitchin [H],

FA = −[Φ, Φ∗], ∂̄A Φ = 0.

It is proved by Hitchin that H is a smooth, noncompact, complete
hyperkahler manifold whose dimension is twice of the dimension of M,
the moduli space of stable bundles of rank n and degree d. For example,
in the n = 2 case, dimH = 6(g − 1). Here the completeness is with
respect to the natural Weil-Peterson metric on M.

There exists a holomorphic circle action on H given by

(A, Φ) → (A, eiθΦ)

which is semifree and has only finitely many fixed point components.
The corresponding moment map is

µ(A, Φ) =
1

2
||Φ||2L2 = i

∫
X

Tr(ΦΦ∗)

which is a proper map to R. It is easy to check that dµ = −iY ω where
Y is the vector field generated by the circle action and ω denotes the
Weil-Peterson Kahler form on H.

The fixed point sets of this action are as follows:
1). Φ = 0, this is the moduli space of stable bundles of rank n and

degree d.
2). Φ 6= 0, these are some kinds of lower rank moduli spaces.

a) n = 2, all of them are 22g-fold covering of the symmetric product
of X.

b) n = 3, rank 2 vortex moduli spaces and symmetric products of
X.

c) n > 3, not very clear.
Simpson has constructed Higgs moduli spaces for higher dimensional

projective manifolds. It will be interesting to study similar localization
formulas for the Higgs moduli of an algebraic surface. In the follow-
ing we briefly discuss the generalization of the foumulas in §1 to this
noncompact setting.
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1. Equivariant cohomology localization. For simplicity we only con-
sider the symplectic volume. We still denote the moduli space of degree
d and rank n stable bundles on X by M.

Let ω̃ = ω + tµ be the equivariant symplectic form. We have (d −
tiY )ω̃ = 0. Let {Pj} be the lower rank moduli sapces which are the fixed
point sets of the circle action on H. Let ω0 be the Kahler form which
is the restriction of ω. We then have the following integral formula∫

M
eω0 = −rest=0t

s−1
∑
Pj

∫
Pj

i∗Pj
(eω̃)

et(νj)

where i∗Pj
is the restriction map, s is the codimension of M and et(νj)

is the equivariant Euler class of the normal bundle νj of Pj in H.

Remark: a). The equivariant Euler classes et(νj) are very clear in
this case [H].

b). Formulas involving more general equivariant differential forms
can be derived similarly.

2. Equivariant K-theory localization. Let L be the determinant line
bundle on H, its restriction to M gives L0. Both L and L0 are ample
line bundles. Let

Ind : K(M) → K(pt)

denote the index homomorphism in K-theory. For a positive integer
k, we have the following formula which computes the Riemann-Roch
number on M in terms of those on the lower rank moduli {Pj}

Ind Lk
0 = Resz=0

1

z

∑
Pj

Indj

i∗Pj
Lk

Λzνj

where z = eit, Λzνj is the equivariant Euler class of the normal bundle
of Pj in K-theory and Indj : K(Pj) → K(pt) is the index homomor-
phism on Pj in K-theory.

3. Sketch of proofs. 1). For the localization in equivariant cohomol-
ogy. With a trick of [PW], the proof is basically the same as in §1.
More precisely, for u > 0 large enough, by applying Bott localization
method, we get

∫
H

eω̃ −
∫
M

eω0

et(ν)
= e−tu

∫
µ−1(u)/S1

eωu

t− Fu

+
∑
Pj

∫
Pj

i∗Pj
eω̃

et(νj)
.
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Here ωu is the induced symplectic form on µ−1(u)/S1 and Fu is the
curvature of the circle bundle µ−1(u) → µ−1(u)/S1. The integral in the
first term of the left hand side is a polynomial in u, since ωu depends
on u in polynomial and Fu is independent of u for u big enough.

Take t positive and let u go to infinity, the first term on the right
hand side goes to zero. Note that et(ν) =

∏s
l=1(t + xl) where {xl} are

the Chern rooots of the normal bundle ν of M in H. Multiplying both
sides by ts−1 and take the residues of both sides, we get the required
formula.

For η some equivariant cohomology class of the universal bundles on
M, it is easy to extend the formula to the class like eω̃η. See §3.

2). For equivariant K-theory, the proof is also the same as in §5 with

a small modification. We consider the operator ∂̄t
Lk = et|µ|2 ∂̄Lke−t|µ|2 .

When t is very large, its L2 index is well-defined. As in §5, we consier
the multiplicity formula as well as the fixed point formula for ∂̄t

Lk ,
we have the invariant part of the equivariant index of ∂̄t

Lk , denoted

[IndS1 ∂̄t
Lk ]

S1
on H, is equal to the index of L0 on M, i.e.

[IndS1 ∂̄t
Lk ]

S1

= Ind Lk
0.

Note that when restricted to M, ∂̄t
Lk is exactly ∂̄Lk

0
on M, and

IndS1 ∂̄t
Lk =

∑
Pj

Indj

i∗Pj
Lk

Λzνj

+

∫
M

Td(TM)
ch L0∏s

l=1(1− z−1e−xl)
.

Then note that

[IndS1 ∂̄t
Lk ]

S1

= resz=0
1

z
IndS1 ∂̄t

Lk

and that

resz=0
1

z

∫
M

Td(TM)
ch L0∏s

l=1(1− z−1e−xl)
= 0

which gives the formula we want.

Remarks: 1. Note that, in the rank 2 case, the two K-theory lo-
calization formulas for vortex and Hitchin moduli spaces can be used
to recover the proof of the Verlinde formula by Thaddeus [Th]. The
formulas for equivariant cohomology can be used to give easy proofs
of the Newstead conjectures on the vanishing of Chern and Pontryagin
classes.
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2. In any case, we see that the Guillemin-Sternberg multiplicity
formula implies the Verlinde formula in a certain sense. One can
also use symplectic cut [Le] to get the above formulas. The opera-

tor ∂̄t
Lk = et|µ|2 ∂̄Lke−t|µ|2 was first considered in [TZ] in a different, but

more general setting.

References

[AB] Atiyah, M. F., Bott, R.: The moment map and equivariant cohomol-
ogy. Topology 23 (1984), 1-28.

[BDW] Bradlow, S. B., Daskalopoulos, G. D., Wentworth, R.: Birational
equivalences of vertex moduli. Preprint (1993).

[DH] Dolgachev, I. V., Hu, Y.: Variation of geometric invariant theory
quotients. Preprint (1994)

[GS] Guillemin, V., Sternberg, S.: Birational equivalence in symplectic cat-
egory. Invent. Math. 97 (1989), 515-538.

[GS1] Guillemin, V., Sternberg, S.: Geometric quantization and multiplici-
ties of group representations. Invent. Math. 67 (1982), 515-538.

[GK] Guillemin, V., Kalkman, J.: A simple proof of the nonabelian local-
ization formula. To appear.

[H] Hitchin, N., The sel-duality equations on a Riemann surface. Proc.
London Math. Soc. (3) 55 (1987), 59-126.

[Le] Lerman, E.: Symplectic cut. Preprint 1995.
[PT] Pidstrigach, V., Tyurin, A.: Lecture given at the Newton Institute,

Cambridge.
[PW] Prato E., Wu, S.: Duistermaat-Heckman measures in a non-compact

setting. Comp. Math. 94 (1994), 113-128.
[Th] Thaddeus, M.: Geometric invariant theory and flips. Preprint (1994).
[Th1] Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula.

Invent. Math. 117, 317-353 (1994).
[TZ] Tian, Y., Zhang, W.: Symplectic reduction and analytic localization.

Preprint 1996.

Dept. of Math.
MIT
Cambridge, MA 02139.


