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In this letter, we illustrate the wave character of the metrics and curvatures of manifolds, and
introduce a new understanding tool - the hyperbolic geometric flow. This kind of flow is new and very
natural to understand certain wave phenomena in the nature as well as the geometry of manifolds.
It possesses many interesting properties from both mathematics and physics. Several applications
of this method have been found.
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1. Introduction. Let us observe the water in the beau-
tiful Westlake in Hangzhou. If there is no wind, the water
surface can be regarded as a plane with a flat Riemman-
nian metric δij(i, j = 1, 2). When wind blows over, the
water wave propagates from one side to another side. In
this case, the metric of the water surface is not flat glob-
ally, and changes along the time. There exists a front,
called wave front, such that the metric is not flat after
the front and is still flat before the front. We would like
to call this phenomenon the wave character of the met-
ric. Motivated by such wave character of metric as well
as the work of Ricci flow, we introduce and study the
following evolution equation which we would like to call
the hyperbolic geometric flow: let M be n-dimensional
complete Riemannian manifold with Riemannian metric
gij , the Levi-Civita connection is given by the Christoffel
symbols

Γk
ij =

1
2
gkl

{
∂gil

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

}
,

where gij is the inverse of gij . The Riemannian curvature
tensors read

Rk
ijl =

∂Γk
jl

∂xi
− ∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl.

The Ricci tensor is the contraction

Rik = gjlRijkl

and the scalar curvature is

R = gijRij .

The hyperbolic geometric flow considered here is the evo-
lution equation

∂2gij

∂t2
= −2Rij . (1)

for a family of Riemannian metrics gij(t) on M . (1) is a
nonlinear system of second order partial differential equa-
tions on the metric gij . The hyperbolic geometric flow
(1) is only weakly hyperbolic, since the symbol of the

derivative of E = E(gij)
4
= −2Rij has zero eigenvectors.

However, using DeTurck’s technique (see [4]), instead of
considering the system (1) we only need to consider a
modified evolution system which is strictly hyperbolic
(see [2] for the details).

The hyperbolic geometric flow is a very natural tool to
understand the wave character of the metrics and wave
phenomenon of the curvatures. We will prove that it has
many surprisingly good properties, which have essential
and fundamental differences from the Einstein field equa-
tions (see [1]) and the Ricci flow (see [7]). More applica-
tions of hyperbolic geometric flow to both mathematics
and physics can be expected.

The elliptic and parabolic partial differential equations
have been successfully applied to differential geometry
and physics (see [8]). Typical examples are Hamilton’s
Ricci flow and Schoen-Yau’s solution of the positive mass
conjecture (see [7], [9]). A natural and important ques-
tion is if we can apply the well-developed theory of hy-
perbolic differential equations to solve problems in differ-
ential geometry and theoretical physics. This letter is an
attempt to apply the hyperbolic equation techniques to
study some geometrical problems and physical problems.
We have already found interesting results in these direc-
tions (see [3]). The method may be more important than
the results presented in this letter. Our results show that
the hyperbolic geometric flow is a natural and powerful
tool to study some problems arising form differential ge-
ometry such as singularities, existence and regularity.

2. Hyperbolic geometric flow. Hyperbolic geometric
flow considered here is the evolution equation (1), it de-
scribes the wave character of the Riemannian metrics
gij(t) on an n-dimensional complete Riemannian man-
ifold M . The version (1) of the hyperbolic geometric
flow is the unnormalized evolution equation. We next
consider the normalized version of hyperbolic geometric
flow (1), which preserves the volume of the flow.

The hyperbolic geometric flow and the normalized hy-
perbolic geometric flow differ only by a change of scale in
space and a change of parametrization in time. We now
derive the normalized version of (1). Assume that gij(t)
is a solution of the (unnormalized) hyperbolic geometric
flow (1) and choose the normalization factor ϕ = ϕ(t)
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such that

g̃ij = ϕ2gij and
∫

M

dṼ = 1. (2)

Next we choose a new time scale

t̃ =
∫

ϕ(t)dt. (3)

Then, for the normalized metric g̃ij , we have

R̃ij = Rij , R̃ =
1
ϕ2

R, r̃ =
1
ϕ2

r, (4)

where r =
∫

M
RdV/

∫
N

dV is the average scalar curva-
ture. Noting the second equation in (2) gives

∫

M

dV = ϕ−n. (5)

Then

∂g̃ij

∂t̃
= ϕ

∂gij

∂t
+ 2

dϕ

dt
gij ,

∂2g̃ij

∂t̃2
=

∂2gij

∂t2
+ 3

(
d

dt
logϕ

)
∂gij

∂t
+

2
(

d

dt
logϕ

)(
d

dt
log

dϕ

dt

)
gij

= −2R̃ij + 3ϕ−1

(
d

dt
logϕ

)
∂g̃ij

∂t̃
+

2ϕ−2

(
d

dt
logϕ

){
d

dt
log

dϕ

dt
− 3

d

dt
logϕ

}
g̃ij

4
= −2R̃ij + a

∂g̃ij

∂t̃
+ bg̃ij .

By (5) and calculations, we observe that a and b are
certain functions of t. The following evolution equation

∂2g̃ij

∂t̃2
= −2R̃ij + a

∂g̃ij

∂t̃
+ bg̃ij (6)

is called the normalized version of the hyperbolic geo-
metric flow (1). Thus, studying the behavior of the hy-
perbolic geometric flow near the maximal existence time
is equivalent to studying the long-time behavior of nor-
malized hyperbolic geometric flow.

Motivated by (6), we may consider the following more
general evolution equations

∂2gij

∂t2
+ 2Rij + Fij

(
g,

∂g

∂t

)
= 0, (7)

where Fij are some given smooth functions of the Rie-
mannian metric g and its first order derivative with re-
spect to t. We name the evolution equations (7) as
general version of hyperbolic geometric flow. Obviously,
when Fij ≡ 0, the system (7) goes back to the standard
hyperbolic geometric flow (1).

In particular, consider the space-time R×M with the
Lorentzian metric

ds2 = −dt2 + gij(x, t)dxidxj . (8)

The Einstein equations in the vacuum, which correspond
to the metric (8), read

∂2gij

∂t2
+ 2Rij +

1
2
gpq ∂gij

∂t

∂gpq

∂t
− gpq ∂gip

∂t

∂gjq

∂t
= 0. (9)

Clearly, the system (9) is a special case of (7) in which

Fij =
1
2
gpq ∂gij

∂t

∂gpq

∂t
− gpq ∂gip

∂t

∂gjq

∂t
.

(9) is called Einstein’s hyperbolic geometric flow. We will
study the geometric and physical meanings and applica-
tions of the Einstein’s hyperbolic geometric flow later.

Remark 1. Neglecting the lower order terms in (9)
leads to the hyperbolic geometric flow (1). In this sense,
(1) can be regarded as the resulting equations taking
leading terms of the Einstein equations in the vacuum
with respect to the metric (8). We will see that the in-
trinsically defined hyperbolic geometric flow equations
have many interesting new features. ¤

Remark 2. Notice that the the equations for Einstein
manifolds, i.e.,

Rij = κgij (κ is a constant) (10)

are elliptic, the Ricci flow equations

∂gij

∂t
= −2Rij (11)

are parabolic, and the hyperbolic geometric flow (see (1))
are hyperbolic. In some sense, the above three kinds
of equations can be regarded as the generalization on
manifolds of the famous Laplace equation, heat equation
and wave equation, respectively. ¤

We may also consider the following field equations

αij
∂2gij

∂t2
+ βij

∂gij

∂t
+ γijgij + 2Rij = 0, (12)

where αij , βij , γij are certain smooth functions on M
which may depend on t. In particular, if αij = 1, βij =
γij = 0, then (12) goes back to the hyperbolic geometric
flow; if αij = 0, βij = 1, γij = 0, then (12) is nothing but
the famous Ricci flow; if αij = 0, βij = 1, γij = − 2

nr,
then (12) is the normalized Ricci flow (see [7]). In
this sense, we name the evolution equations (12) as
hyperbolic-parabolic geometric flow.

At the end of this section, we remark that if the under-
lying manifold M is a complex manifold and the metric
is Kähler, similar to (12) the following complex evolution
equations are very natural to consider

aij

∂2gij

∂t2
+ bij

∂gij

∂t
+ cijgij + 2Rij = 0, (13)
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where aij , bij , cij are certain smooth functions on M
which may also depend on t. The evolution equations
(13) are called the complex hyperbolic-parabolic geomet-
ric flow.

3. Exact solutions. This section is devoted to study-
ing the exact solutions for the hyperbolic geometric flow
(1). These exact solutions are useful to understand the
basic features of the hyperbolic geometric flow. They will
also be useful to understand the general Einstein equa-
tions. We believe that there is a correspondence between
the solutions of the hyperbolic geometric flow and the
general Einstein equations.

First recall that a Riemannian metric gij is called Ein-
stein if Rij = λgij for some constant λ. A smooth man-
ifold M with an Einstein metric is called an Einstein
manifold.

If the initial metric gij(0, x) is Ricci flat, i.e.,
Rij(0, x) = 0, then gij(t, x) = gij(0, x) is obviously a
solution to the evolution equation (1). Therefore, any
Ricci flat metric is a stationary solution of the hyper-
bolic geometric flow (1).

If the initial metric is Einstein, that is, for some con-
stant λ it holds

Rij(0, x) = λgij(0, x), ∀ x ∈ M , (14)

then the evolving metric under the hyperbolic geometric
flow (1) will be steady state, or will expand homotheti-
cally for all time, or will shrink in a finite time.

Indeed, since the initial metric is Einstein, (14) holds
for some constant λ. Let

gij(t, x) = ρ(t)gij(0, x). (15)

By the defintion of the Ricci tensor, one obtains

Rij(t, x) = Rij(0, x) = λgij(0, x). (16)

In the present situation, the equation (1) becomes

∂2(ρ(t)gij(0, x))
∂t2

= −2λgij(0, x). (17)

This gives an ODE of second order

d2ρ(t)
dt2

= −2λ. (18)

Obviously, one of the initial conditions for (18) is

ρ(0) = 1. (19)

Another one is assumed as

ρ′(0) = v, (20)

where v is a real number standing for the initial velocity.
The solution of the initial value problem (18)-(20) is given
by

ρ(t) = −λt2 + vt + 1. (21)

A typical example of the Einstein metric is

ds2 =
1

1− κr2
dr2 + r2dθ2 + r2 sin2 θdϕ2, (22)

where κ is a constant taking its value −1, 0 or 1. We can
prove that

ds2 = R2(t)
{

1
1− κr2

dr2 + r2dθ2 + r2 sin2 θdϕ2

}
(23)

is a solution of the hyperbolic geometric flow (1), where

R2(t) = −2κt2 + c1t + c2

in which c1 and c2 are two constants. The metric (23)
plays an important role in cosmology.

More interesting examples are the exact solutions with
axial symmetry. We are interested in the exact solutions
with the following form for the hyperbolic geometric flow
(1)

ds2 = f(t, z)dz2+
h(t)

g(t, z)
[
(dx− µ(t, z)dy)2 + g2(t, z))dy2

]
,

(24)
where f, h, g are smooth functions with respect to vari-
ables. Clearly,

(gij) =




h
g −µh

g 0

−µh
g

(µ2+g2)h
g 0

0 0 f


 (25)

and the inverse of (gij) is

(gij)−1 =




µ2+g2

gh
µ
gh 0

µ
gh

1
gh 0

0 0 f−1


 .

In order to guarantee that the metric gij is Riemannian,
we assume

f(t, z) > 0,
h(t)

g(t, z)
> 0. (26)

Since the coordinates x and y do not appear in the pre-
ceding metric formula, the coordinate vector fields ∂x

and ∂y are Killing vector fields. The flow ∂x (resp. ∂y)
consists of the coordinate translations that send x to
x + ∆x (resp. y to y + ∆y), leaving the other coordi-
nates fixed. Roughly speaking, these isometries express
the x-invariance (resp. y-invariance) of the model. The
x-invariance and y-invariance show that the model pos-
sesses the z-axial symmetry.

By a direct calculation, we obtain the Ricci curvature
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corresponding to the metric (24)




R11 = h
4f2g3

[
2fµ2

z + 2fggzz − ggzfz − 2fg2
z

]
,

R12 = h
4f2g3

[
gµfzgz + 2fµg2

z + 2fg2µzz

−g2fzµz − 4fggzµz − 2fµµ2
z − 2fgµgzz

]
,

R13 = 0,

R22 = h
4f2g3

[
2g2µfzµz + 8fgµgzµz + 2f(µ2 − g2)µ2

z

+2fg(µ2 − g2)gzz − g(µ2 − g2)fzgz

−2f(µ2 − g2)g2
z − 4fg2µµzz

]
,

R23 = 0,

R33 = − 1
2g2 (g2

z + µ2
z).

(27)
Noting (25) and (27), we obtain from (1) that

1
g3

[
g2htt + 2hg2

t − ghgtt − 2ghtgt

]

= − h
2f2g3

[
2fµ2

z + 2fggzz − ggzfz − 2fg2
z

]
,

(28)

1
g3

[
ghµg2

tt + 2ghgtµt + 2gµgtht − g2hµtt−
g2µhtt − 2g2htµt − 2hµg2

t

]

= − h
2f2g3

[
gµfzgz + 2fµg2

z + 2fg2µzz − g2fzµz

−4fggzµz − 2fµµ2
z − 2fgµgzz

]
,

(29)

1
g3

[
g2(µ2 + g2)htt + 2g2hµµtt + 4g2µhtµt + 2hµ2g2

t +

2g2hµ2
t − gh(µ2 − g2)gtt − 2g(µ2 − g2)htgt − 4ghµgtµt

]

= − h
2f2g3

[
2g2µfzµz + 8fgµgzµz + 2f(µ2 − g2)µ2

z

+2fg(µ2 − g2)gzz − g(µ2 − g2)fzgz

−2f(µ2 − g2)g2
z − 4fg2µµzz

]
,

(30)
and

ftt =
1
g2

(g2
z + µ2

z). (31)

Multiplying (28) by µ then summing (29) gives

2ghgtµt − g2hµtt − 2g2htµt

= − h
2f2

(
2fg2µzz − 4fggzµz − g2fzµz

)
.

(32)

Multiplying (28) by (g2 − µ2), (32) by 2µ then summing
these two resulting equations and (30) leads to

g2htt + h
(
g2

t + µ2
t

)
= 0. (33)

Consider the linear expanding of the rotation, i.e.,

h(t) = t.

In this case, it follows from (33) that

gt = µt = 0. (34)

This implies that g and µ are independent of t, that is,
g = g(z) and µ = µ(z). Therefore, (28)-(31) reduce to





2fggzz + 2fµ2
z − 2fg2

z − gfzgz = 0,

2fgµzz − 4fgzµz − gfzµz = 0,

ftt = 1
g2

(
g2

z + µ2
z

) 4
= F (z).

(35)

By the third equation in (35), we have

f(t, z) =
1
2
F (z)t2 + c1(z)t + c2(z), (36)

where c1(z) and c2(z) are two arbitrary smooth functions
of z. Substituting (36) into the first equation in (35)
yields a quadratic equation on t

A(z)t2 + B(z)t + C(z) = 0, (37)

where




A(z) = µ′(gµ′g′′ + µ′3 + g′2µ′ − gg′µ′′),

B(z) = 2c1(gg′′ + µ′2 − g′2)− gg′c′1,

C(z) = 2c2(gg′′ + µ′2 − g′2)− gg′c′2,

(38)

where ·′ stands for the derivative of · with respect to z.
Noting the arbitrariness of t gives the following system
of ODEs





µ′(gµ′g′′ + µ′3 + g′2µ′ − gg′µ′′) = 0,

2c1(gg′′ + µ′2 − g′2)− gg′c′1 = 0,

2c2(gg′′ + µ′2 − g′2)− gg′c′2 = 0.

(39)

Similarly, substituting (36) into the second equation in
(35) leads to





g′(gg′µ′′ − µ′3 − gµ′g′′ − g′2µ′) = 0,

2c1(gµ′′ − 2g′µ′)− gµ′c′1 = 0,

2c2(gµ′′ − 2g′µ′)− gµ′c′2 = 0.

(40)

Case I g′ = 0
In this case, it follows from the first equation in (39)

that µ′ = 0. This implies that

g = a, µ = b,

where a and b are constants. Then the solution of (35) is

f = c1(z)t + c2(z), g = a, µ = b. (41)

Therefore, the desired solution reads

ds2 = (c1(z)t + c2(z))dz2 +
t

a
[(dx− bdy)2 + a2dy2],

where a is a positive constant, and c1(z), c2(z) are two
positive smooth functions of z.
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Case II µ′ = 0, i.e., µ = µ0 = const.
In this case, (40) is always true, and (39) becomes

{
2c1(gg′′ − g′2) = gg′c′1,

2c2(gg′′ − g′2) = gg′c′2.
(42)

It follows from (42) that

c1(z) = a1 [(ln g)′]2 , c1(z) = a2 [(ln g)′]2 ,

where a1, a2 are two constants, and g is an arbitrary
positive smooth function of z. Hence, the desired solution
reads

ds2 = [(ln g)′]2 (t2/2+a1t+a2)dz2+
t

g
[(dx−µ0dy)2+g2dy2].

In order to guarantee the above metric is Riemannian,
we assume that the constants a1 and a2 satisfy

a2
1 < 2a2

and g is an arbitrary positive smooth function satisfying
(ln g)′ 6= 0.

Case III g′ 6= 0, µ′ 6= 0
Obviously, the first equation in (39) is equivalent to

the first one in (40), and they are equivalent to

gµ′g′′ + µ′3 + g′2µ′ − gg′µ′′ = 0. (43)

On the one hand, it follows from the second equation in
(39) that

c′1
c1

= 2
gg′′ + µ′2 − g′2

gg′
. (44)

On the other hand, by the second equation in (40) we
have

c′1
c1

= 2
gµ′′ − 2g′µ′

gµ′
. (45)

Noting (43), we observe that (44) is equivalent to (45).
Thus, we have

c′1
c1

= 2
(

µ′′

µ′
− 2g′

g

)
. (46)

It follows from (46) that

c1(z) = b1g
−4(µ′)2, (47)

where b1 is a constant. Similarly, we get

c2(z) = b2g
−4(µ′)2, (48)

where b2 is a constant. Therefore, the desired metric
reads

ds2 = f(t, z)dz2 +
t

g(z)
[
(dx− µ(z)dy)2 + g2(z))dy2

]
,

(49)

where

f(t, z) =
g′2 + µ′2

2g2
+

µ′2

g4
(b1t + b2),

g, µ are smooth functions satisfying (43). Moreover, in
order to guarantee the metric (49) is Riemannian, we
require g > 0, b1 ≥ 0 and b2 > 0.

Remark 3. Recently, Shu and Shen prove that
Birkhoff theorem is still true for the hyperbolic geometric
flow (see [10]). ¤

4. Short-time existence and uniqueness. In this section
we state the short-time existence and uniqueness result
for the hyperbolic geometric flow (1) on a compact n-
dimensional manifold M . We can show that the hyper-
bolic geometric flow is a system of second order nonlinear
weakly hyperbolic partial differential equations. The de-
generacy of the system is caused by the diffeomorphism
group of M which acts as the gauge group of the hy-
perbolic geometric flow. Because the hyperbolic geo-
metric flow (1) is only weakly hyperbolic, the short-time
existence and uniqueness result on a compact manifold
does not come from the standard PDEs theory. However
we can still prove the following short-time existence and
uniqueness theorem.

Theorem 1. Let (M , g0
ij(x)) be a compact Rieman-

nian manifold. Then there exists a constant ε > 0 such
that the initial value problem





∂2gij

∂t2
(t, x) = −2Rij(t, x),

gij(0, x) = g0
ij(x),

∂gij

∂t
(0, x) = k0

ij(x),

has a unique smooth solution gij(t, x) on M × [0, ε),
where k0

ij(x) is a symmetric tensor on M .
The above short-time existence and uniqueness theo-

rem can be proved by the following two ways: (a) using
the gauge fixing idea as in Ricci flow, we can derive a
system of second order nonlinear strictly hyperbolic par-
tial differential equations, thus Theorem 1 comes from
the standard PDEs theory; (b) we reduce the hyperbolic
geometric flow (1) to a first-order quasilinear symmetric
hyperbolic system, then using the Friedrich’s theory [6]
of symmetric hyperbolic system (more exactly, the quasi-
linear version [5]) we can also prove Theorem 1. See Dai,
Kong and Liu [2] for the details.

5. Wave property of curvatures. The hyperbolic
geometric flow is an evolution equation on the metric
gij(t, x). The evolution for the metric implies a nonlin-
ear wave equation for the Riemannian curvature tensor
Rijkl, the Ricci curvature tensor Rij and the scalar cur-
vature R.

Theorem 2. Under the hyperbolic geometric flow (1),
the curvature tensors satisfy the evolution equations

∂2Rijkl

∂t2
= ∆Rijkl + (lower order terms), (50)

∂2Rij

∂t2
= ∆Rij + (lower order terms), (51)
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∂2R

∂t2
= ∆R + (lower order terms), (52)

where ∆ is the Laplacian with respect to the evolving
metric, the lower order terms only contain lower order
derivatives of the curvatures.

By (1), the equations (50)-(52) come from direct calcu-
lations. See Dai, Kong and Liu [3] for the details and ge-
ometric applications. The equations (50)-(52) show that
the curvatures possess interesting wave property.

6. Summary and discussion. Hyperbolic partial differ-
ential equations can be used to describe the wave phe-
nomena in the nature. In this letter, the hyperbolic geo-
metric flow is introduced to illustrate the wave character
of the metrics, which also implies the wave property of
the curvature. Note that the hyperbolic geometric flow
possesses very interesting geometric properties and dy-
namical behavior. A direct application of Theorem 2
gives the stability of solutions to the hyperbolic geomet-

ric flow equation on the Euclidean spaces under metric
perturbations (see [3]). More applications of this flow to
differential geometry and physics can be expected.

So far there have been many successes of elliptic and
parabolic equations applied to mathematics and physics,
but by now very few results on the applications of hy-
perbolic PDEs are known (see [5]). We believe that the
hyperbolic geometric flow is a new and powerful tool to
study geometric problems. Moreover, its physical appli-
cation has been observed (see [3]). In the future we will
study several fundamental problems, for examples, long-
time existence, formation of singularities, as well as the
physical and geometrical applications.

The authors thank Chunlei He and Wenrong Dai for
their valuable discussions. The work of Kong was sup-
ported in part by the NNSF of China and the NCET of
China; the work of Liu was supported by the NSF and
NSF of China.
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