
Mathematical Results

Inspired by Physics

Results of three different types in geometry
and topology:

(1) Elliptic Genera: Vanishing and Rigidity
Theorems.

(2) Moduli Spaces: Formulas for Intersection
Numbers.

(3) Mirror Principle: Formulas for Counting
Curves in CY Manifolds.



Common Features:

A. Physicists made conjectures based on phys-
ical principles, or formal mathematical argu-
ments.

Localizations on infinite dimensional spaces:
Path integrals.

B. The mathematical proofs depend on local-
ization techniques, combining with various
parts of mathematics:

Modular forms, Heat kernels, Symplectic ge-
ometry, Various moduli spaces.

C. New methods of proofs inspired more new
results.



(1). Elliptic Genus:

Only discuss a vanishing theorem of the Witten
genus, which is the index of the Dirac operator
on loop space. This is a loop space analogue
of the Atiyah-Hirzebruch vanishing theorem.

Will also discuss a loop space analogue of a
vanishing theorem of Lawson-Yau.

There are much more general new results to
be mentioned.

Let M be a compact smooth spin manifold
with an S1-action, D be the Dirac operator.

Theorem: (AH 70) IndD = Â(M) = 0.

Remark: K3 surface does not allow nontrivial
smooth S1-action.



Loop space: LM = Maps {S1 → M}.

Dirac operator on LM : (S1-equivariant)

DL = D ⊗
⊗∞

n=1 SqnTM =
∑

n=0 D ⊗ Vn qn

where Vn combinations of Sj(TM) from sym-
metric operation:

St E = 1 + tE + t2S2E + · · · .

DL=Infinitely many operators: D, D⊗TM, · · · .

Theorem: (L 92) If p1(M)S1 = n π∗u2, then
the Witten genus vanishes: IndDL = 0.

Here p1(M)S1 is the equivariant first Pontrjagin
class and u the generator of H∗(BS1,Z).

π : M ×S1 ES1 → BS1 natural projection.



The condition on p1(M)S1 is equivalent to that
the S1 preserves the spin structure of LM .

If S3 acts on M , then p1(M)S1 = n π∗u2 is
equivalent to p1(M) = 0, (' LM is spin).

Corollary: Assume S3 acts on M and p1(M) =
0, then the Witten genus, IndDL, vanishes.

Compare with Lawson-Yau’s theorem:

Theorem: (LY 73) Assume S3 acts on M ,
then IndD = 0.

The proof combines the Atiyah-Bott-Segal-Singer
fixed point formula with Jacobi forms.

Liu 92: More new rigidity, vanishing and di-
visibility results involving general loop group
representations can be proved in a similar way:



Kac-Weyl character formula has modular prop-
erty.

Level 1 representations of loop groups ⇒ Wit-
ten conjectures (1986) on rigidity of elliptic
genera: Bott-Taubes, Hirzebruch, Krichever,
Landweber-Stong, Ochanine. (' Signature on
loop space.)

Recent works:

With Ma and Zhang: Family; Foliation;

With Dong and Ma: Orbifolds; Vertex opera-
tor algebra bundles.

93: Miraculous cancellation formula for 8k +4
dimensional manifolds: At top degree

L(TM) = 23 ∑k
j=0 26k−6jÂ(TM) chBj



where Bj from operations of TM . This is an
identity on differential forms ⇒ divisibility, eta-
invariants, holonomy of determinant line bun-
dles.

More general formulas involving vector bundles
can be proved from modular invariance.

Alveraz-Gaume and Witten(1982): k = 1. Im-
portant in string theory.



(2). Moduli Spaces

Moduli spaces of flat connections on Riemann
surfaces: From 50’s to 90’s, Indian school;
GIT theory; Atiyah-Bott, Witten: Gauge the-
ory; Donaldson and English school....

The most effective way to compute intersec-
tion numbers from heat kernel (L 95-96): Prove
formulas of Witten derived from path integrals.

Mu: Moduli space of flat G-connections on
principal G bundle on a Riemann surface S with
boundary. u ∈ Z(G), the center.

Mc: Moduli space of flat connections on a G
bundle on S with holonomy around the bound-
ary = c ∈ G (close to u).

Assume moduli smooth, G simply connected.
Method works for general cases.



Refined Witten Fromula:

Theorem:(L 96) We have equality:

∫

Mu p(
√
−1Ω) eωu = |Z(G)| |G|

2g−2

(2π)2Nu ·

limc→ulimt→0
∑

λ∈P+
χλ(c)
d2g−1
λ

p(λ + ρ) e−tpc(λ).

Notations:

p(
√
−1Ω): Pontrjagin class of TMu associated

to a Weyl-invariant polynomial p.

P+: all irreducible representations of G, as a
lattice in t∗.

χλ: character of λ, dλ its dimension.

pc(λ) = |λ + ρ|2 − |ρ|2. ρ = 1
2

∑

α∈∆+ α.



∆+: positive roots.

Nu: complex dimension of Mu; g: genus of S.

ωu: canonical symplectic form on Mu induced
from Poincare duality of cohomology.

Remark:

Derivative with respect to c + Heat kernel ⇒
Symplectic volume:

Vol(Mc) =
∫

Mc eωc,

where ωc canonical symplectic form on Mc, is a
(piecewise) polynomial in C of degree at most
(2g − 1) |∆+| (c = u expC)

⇒ Vanishing results of intersection numbers.



Proof uses the holonomy model of the moduli
space and heat kernel on G:

Consider map: f : G2g ×Oc → G with

f(x1, · · · , yg; z) =
g

∏

j=1
[xj, yj]z.

Oc: conjugacy class through (generic) c ∈ G.

Moduli space Mc = f−1(e)/G.

Heat kernel on G:

H(t, x, y) = 1
|G|

∑

λ∈P+
dλ · χλ(xy−1)e−tpc(λ)

where |G|: volume of G.

Compute the integral

I(t) =
∫

h∈G2g×Oc
H(t, c, f(h))dh



in two ways: Local and Global,

Local: As t → 0, I(t) localizes to integral on
Mc, which is the symplectic volume (= Rei-
demeister torsion = the RS-torsion). Poincare
duality for both symplectic form and torsion(Witten,
B-L, Milnor, Johnson).

Global: Orthogonal relations for the characters
gives the infinite sum.

Take derivative with respect to c + Symplectic
geometry relating ωc to ωu ⇒ the final formula.

Remarks:

(1). Similar results for more boudary compo-
nents moduli.

S: Riemann surface with s boundary compo-
nents.



Mc: Moduli of flat connections with holon-
omy c1, · · · , cs ∈ G around the corresponding
boundaries.

ωc: canonical symplectic form from Poincare
duality.

More general refined Witten formula:

Theorem(L 96): We have equality:

∫

Mc p(
√
−1Ω)eωc = |Z(G)|

|G|2g−2+s ∏s
j=1 j(cj)

(2π)2Nc
∏s

j=1 |Zcj |
·

limt→0
∑

λ∈P+

∏s
j=1 χλ(cj)

d2g−2+s
λ

p(λ + ρ)e−tpc(λ).

Here Nc: the complex dimension of Mc;

p(
√
−1Ω): Pontrjagin class of Mc;

Zcj: centralizer of cj;



j(cj): the Weyl denominator.

Taking derivatives with respect to the cj’s: get
intersection numbers involving the other gen-
erators of the cohomology ring of Mc.

(2). The integrals we computed contain all
the information for Verlinde formula. Bismut-
Labourie: Rewrite infinite sum as ”finite sum”:
residues.

Derivatives of Volume + Residues ⇒ Verlinde.

(3). Such method applies to more general
situation like moment maps, which gives the
nonabelian localization formula; fundamental
groups of 3-manifolds....



(3) Mirror Principle.

X: Projective manifold.

Mg,k(d, X): moduli space of stable maps of
genus g and degree d with k marked points
into X, modulo the obvious equivalence.

Points inMg,k(d, X) are triples: (f ;C; x1, · · · , xk):

f : C → X: degree d holomorphic map;

x1, · · · , xk: k distinct smooth points on the
genus g curve C.

f∗([C]) = d ∈ H2(X, ,Z): identified as inte-
gral index (d1, · · · , dn) by choosing a basis of
H2(X, ,Z) (dual to the Kahler classes).

Virtual fundamental cycle of Li-Tian, (Behrend-
Fantechi): LTg,k(d, X), a homology class of the
expected dimension in Mg,k(d, X).



Consider the case k = 0 first.

V : concavex bundle on X, direct sum of a
positive and a negative bundle on X.

V induces sequence of vector bundles V g
d on

Mg,k(d, X): H0(C, f∗V )⊕H1(C, f∗V ).

b: a multiplicative characteristic class.

Problem: Compute Kg
d =

∫

LTg,0(d,X) b(V g
d ).

Mirror Principle: Compute

F (T, λ) =
∑

d, g Kg
d λg ed·T

in terms of hypergeometric series.

Here λ, T = (T1, · · · , , Tn) formal variables.



Balloon manifold X: projective manifold with
complex torus action and isolated fixed points.

H = (H1, · · · , Hn): a basis of equivariant Kahler
classes.

X is called a balloon manifold (GKM) if:

(1). H(p) 6= H(q) for any two fixed points
p, q ∈ X;

(2). The tangent bundle TpX has linearly in-
dependent weights for any fixed point p ∈ X.

Complex 1-dimensional orbits: balloons ' copies
of P1.

V : fixed splitting type when restricted to each
balloon.



Theorem: (LLY 97) Mirror principle holds for
balloon manifolds and concavex bundles.

Mirror formulas: b = Euler class, the genus
g = 0.

Mirror principle implies that mirror formulas
actually hold for very general manifolds such
as Calabi-Yau complete intersections in toric
manifolds and in compact homogeneous man-
ifolds

⇒ All the mirror formulas for counting rational
curves predicted by string theorists.

Mirror principle holds even for non-Calabi-Yau
and for certain local complete intersections.

Mirror principle for counting higher genus curves:
need to find the explicit hypergeometric series.



Example: Consider toric manifold X and g =
0. D1, .., DN : toric invariant divisors.

V =
⊕

j Lj, with c1(Lj) ≥ 0 and c1(X) = c1(V ).

〈·, ·〉: pairing of homology and cohomology classes.

b: the Euler class e; Φ(T ) =
∑

d K0
d ed·T .

Hypergeometric series

HG[B](t) = e−H·t ∑

d
∏

j
∏〈c1(Lj),d〉

k=0 (c1(Lj)− k)·

∏

〈Da,d〉<0
∏−〈Da,d〉−1

k=0 (Da+k)
∏

〈Da,d〉≥0
∏〈Da,d〉

k=1 (Da−k)
ed·t.

Corollary: There are explicitly computable func-
tions f(t), g(t), such that
∫

X

(

efHG[B](t)− e−H·T e(V )
)

= 2Φ−
∑

j
Tj

∂Φ
∂Tj



where T = t + g(t).

Φ: determined uniquely from equation.

f, g: from expansion of HG[B](t).

V : can be more general concavex bundles with
splitting type.

Example: Calabi-Yau quintic.

V = O(5) on X = P4 and the hypergeometric
series is:

HG[B](t) = eH t ∑∞
d=0

∏5d
m=0(5H+m)

∏d
m=1(H+m)5

ed t,

H: hyperplane class on P4; t: parameter.

Introduce



F(T ) = 5
6T3 +

∑

d>0 K0
d ed T .

Algorithm: Take expansion in H:

HG[B](t) = H{f0(t)+f1(t)H+f2(t)H2+f3(t)H3}.

Candelas Formula: With T = f1/f0,

F(T ) =
5
2
(
f1
f0

f2
f0
−

f3
f0

).

Local mirror symmetry: V concave bundle:
' Geometric engineering in string theory. (Canon-
ical bundle on del Pezzo surfaces, open CY).

Hypergeometric series = periods of elliptic curves:
Seiberg-Witten curves.

Trivial example: O(−1) ⊕ O(−1) on P1: mul-
tiple cover formula.



Key ingredients for the proof:

(1). Euler data;

(2). Linear and non-linear sigma model;

(3). Balloon and hypergeometric Euler data.

Nonlinear sigma model: stable map moduli;

Linear sigma model: simple moduli space.

Apply functorial localization formula to the
equivariant collapsing map between the two
sigma models, and to the evaluation maps.

Push computations to the simple spaces.

Hypergeometric series naturally appear from
localizations on the linear sigma models and at
the smooth fixed points in the moduli spaces.



Generalized Euler data includes general Gromov-
Witten invariants: compute integrals of the
form:

Kg
d,k =

∫

LTg,k(d,X)

∏

j
ev∗jωj · b(V

g
d )

where ωj ∈ H∗(X).

Generalized Mirror Principle: compute such
series in terms of hypergeometric series. Be-
ing developed together with mirror principle for
counting discs, higher genus curves....



Remarks:

(1). Most important contribution: Candelas
and his collaborators, Witten, Vafa, Warner,
Greene, Morrison, Plesser, and many others:
physical theory of mirror symmetry, computa-
tions used mirror manifolds and their periods.

(2). Related mathematical works: Yau and
his collaborators Lian, Hosono, Klemm; Katz,
Kontsevich, Givental, Gathman, Bertram....

(3). More conjectures from physics can be
approached by localization techniques.


