(1) Consider the system $\dot{x} = \sin(x) + \cos(x)$.

(a) Sketch the corresponding vector field on the line, find all fixed points of the system, and classify the stability of these fixed points.

(b) Show that \dot{x} gives a well-defined vector field on the circle and sketch the corresponding vector field on the circle.

(c) Find the acceleration \ddot{x} of the flow $x(t)$ as a function of x and find the points on the circle where the flow has maximum positive acceleration.

Solution:

(a) The stable fixed points are of the form $x^* = \frac{3\pi}{4} + 2\pi k$ and the unstable fixed points are of the form $x^* = \frac{7\pi}{4} + 2\pi k$, for k an integer.

(b) For any integer k, we have

$$\sin(x + 2\pi k) + \cos(x + 2\pi k) = \sin(x) + \cos(x)$$

Thus, indeed, the vector field associated to \dot{x} is well-defined on the circle.

(c) Applying the chain rule, the acceleration is given by

$$\ddot{x} = \frac{d}{dt}(\dot{x})$$

$$= \frac{d}{dx}(\sin(x) + \cos(x)) \cdot \frac{dx}{dt}$$

$$= (\cos(x) - \sin(x))(\sin(x) + \cos(x))$$

$$= \cos^2(x) - \sin^2(x)$$

So, the acceleration is maximal when $\cos^2(x) = 1$ and $\sin^2(x) = 0$, namely when $x = 0$ or $x = \pi$.

(2) Show that the system $\dot{x} = x^{\frac{5}{6}}$ with $x(0) = 0$ has infinitely many solutions $x(t)$.

Hint: First find two distinct solutions and then “glue” these together at arbitrary t_0

Solution:

It is clear the $x(t) = 0$ is one solution of the system. However, we may also solve the system analytically by separating variables and integrating. Using this method, the system yields $x^{-\frac{1}{6}}dx = dt$ and so $6x^{\frac{1}{6}} = t + C$. Since $x(0) = 0$, the constant C is zero, and thus, solving for x we have $x(t) = (\frac{1}{4}t)^6$ as a second solution to the system.

Now choose an arbitrary positive real number t_0 and consider the function

$$x(t) = \begin{cases}
(\frac{1}{4}(t - t_0))^6 & \text{if } t \geq t_0 \\
0 & \text{if } -t_0 < t < t_0 \\
(\frac{1}{4}(t + t_0))^6 & \text{if } t \leq t_0
\end{cases}$$
Then, we have \(x(0) = 0 \) and

\[
\dot{x} = \begin{cases}
\left(\frac{1}{6} (t - t_0) \right)^5 & \text{if } t \geq t_0 \\
0 & \text{if } -t_0 < t < t_0 \\
\left(\frac{1}{6} (t + t_0) \right)^5 & \text{if } t \leq t_0
\end{cases}
\]

So the proposed \(x(t) \) is indeed a solution of the system \(\dot{x} = x^{\frac{5}{6}} \). Since \(t_0 \) can be chosen to be any positive real number, we have, in this way, produced infinitely many solutions of the given system.

(3) Prove that periodic solutions for a vector field on a line are impossible using the following analytic method:

Suppose \(x(t) \) is a nontrivial periodic solution to a system \(\dot{x} = f(x) \), namely \(x(t) = x(t+C) \) for some minimal \(C > 0 \). Consider the integral \(\int_{t}^{t+C} f(x) \frac{dx}{dt} dt \).

(a) Simplify the integral using the chain rule.

(b) Simplify the integral by plugging in for \(f(x) \) and \(\frac{dx}{dt} \).

Conclude that such a solution is impossible.

Solution:

(a) By the chain rule, \(\int_{t}^{t+C} f(x) \frac{dx}{dt} dt = \int_{x(t)}^{x(t+C)} f(x) dx \), which equals zero because \(x(t + C) = x(t) \).

(b) By plugging in \(\dot{x}(t) \) for the \(f(x) \) and \(\frac{dx}{dt} \) terms, we get \(\int_{t}^{t+C} f(x) \frac{dx}{dt} dt = \int_{t}^{t+C} \dot{x}^2 dt \), which must be strictly greater than zero, since by assuming \(x(t) \) is nontrivial periodic we ensure \(\dot{x} \neq 0 \).

But this is impossible. We cannot have \(\int_{t}^{t+C} f(x) \frac{dx}{dt} dt \) both equal to zero and strictly greater than zero. Therefore such a periodic solution to the system \(\dot{x} = f(x) \) cannot exist.

(4) Consider the system \(\dot{x} = ax - x^3 \) where \(a \) may be positive, negative, or zero. Find the fixed points of \(\dot{x} \) and classify their stability using the following methods:

(a) Graphing the potential \(V(x) \) and determining its equilibrium points

(b) Using linear stability analysis or, if linear stability analysis fails, graphical arguments

Solution:

(a) We need to solve \(-\frac{dv}{dx} = ax - x^3 \). Integrating and multiplying by -1 yields

\[
V(x) = \frac{1}{4} x^4 - \frac{1}{2} ax^2
= \frac{1}{4} x^2 (x^2 - 2ax)
\]

When \(a < 0 \), we have a single equilibrium located at \(x = 0 \) and it is stable.

When \(a = 0 \), we also have a single equilibrium point at \(x = 0 \) and it is stable.

When \(a > 0 \) we have three equilibrium points: stable ones at \(x = \pm \sqrt{a} \) and an unstable one at \(x = 0 \).

(b) Write \(\dot{x} = f(x) \), as usual. Then \(f(x) = ax - x^3 = x(a - x^2) \) and \(f'(x) = a - 3x^2 \).

If \(a < 0 \), we have a single fixed point \(x^* = 0 \) and since \(f'(0) = a \) it is stable.
If \(a = 0 \), we have also a single fixed point \(x^* = 0 \), but now since \(f'(0) = a = 0 \), we cannot use linear stability analysis to determine its stability. However, since in this case \(f(x) = -x^3 \) it is easy to see graphically that the fixed point is stable.

If \(a > 0 \) we have three fixed points: \(x^* = \pm \sqrt[3]{a} \) and \(x^* = 0 \). Since \(f'(\pm \sqrt[3]{a}) = -2a = -2a \) and \(f'(0) = a \), the points \(x^* = \pm \sqrt[3]{a} \) are stable and the point \(x^* = 0 \) is unstable.

(5) Consider the system \(\dot{x} = rx - \frac{x}{1+x^2} \). Find the values of \(r \) at which bifurcations occur and sketch the bifurcation diagram of the fixed points \(x^* \) of the system versus \(r \).

Solution:

We wish to determine changes in the number and stability of the fixed points of \(\dot{x} \) as we vary \(r \). Namely we want to consider for how many \(x \) we have \(0 = rx - \frac{x}{1+x^2} \). Multiplying both sides of this equation by \(1 + x^2 \) and simplifying yields \(0 = rx(x^2 + \frac{r-1}{r}) \).

Then when \(r \leq 0 \), the only solution to this equation is at \(x = 0 \). When \(0 < r < 1 \), there are three solutions: \(x = \pm \sqrt{\frac{r-1}{r}} \) and \(x = 0 \). When \(r > 1 \), we again have that the only solution is \(x = 0 \).

Translating this into the language of fixed points, when \(r \leq 0 \), the only fixed point of \(\dot{x} \) is at \(x^* = 0 \) and by graphing we see it is stable. When \(0 < r < 1 \), there are three fixed points: \(x^* = \pm \sqrt{\frac{r-1}{r}} \), which are unstable, and \(x^* = 0 \) which is stable. When \(r > 1 \), the only fixed point is at \(x^* = 0 \) and it is unstable.

So there are bifurcations at \(r = 0 \) and at \(r = 1 \). The one at \(r = 1 \) is a subcritical pitchfork bifurcation and the one at \(r = 0 \) we don’t have a name for.

(6) Consider the system \(\dot{x} = h + rx - x^2 \).

(a) Sketch the bifurcation diagram for the system \(\dot{x} \) when \(h \) is positive, negative, and zero.

(b) Determine the regions of the \((r, h)\) plane corresponding to qualitatively different vector fields and identify the bifurcations occurring on the boundaries of these regions.

Solutions:

(a) In order to sketch the bifurcation diagrams, we need to understand the fixed points of the system, namely the solutions to \(0 = h + rx^* - x^*^2 \). Applying the quadratic formula yields \(x^* = \frac{r \pm \sqrt{r^2 + 4h}}{2} \). We then graph this for the various \(h \) considered.

Note, for instance, that when \(h = 0 \) our system is \(\dot{x} = rx - x^2 \), which is the normal form for a transcritical bifurcation, thus we already know what the bifurcation diagram in this case looks like.

(b) We have the explicit formula \(x^* = \frac{r \pm \sqrt{r^2 + 4h}}{2} \) for the fixed points of \(\dot{x} \) in terms of \(r \). So, in this case, the number of fixed points of the system is completely determined by the \((r^2 + 4h)\)-term in this expression. Namely, when \(r^2 + 4h > 0 \) there are two distinct fixed points, given by \(x^* = \frac{r - \sqrt{r^2 + 4h}}{2} \) and \(x^* = \frac{r + \sqrt{r^2 + 4h}}{2} \). When \(r^2 + 4h = 0 \), there is a single fixed point \(x^* = \frac{r}{2} \). When \(r^2 + 4h < 0 \), there are no fixed points.

A change in stability occurs, as addressed in part (a) when \(h = 0 \) and \(r = 0 \) because we have a transcritical bifurcation there.

Namely, in the \((r, h)\)-plane you should draw the curve \(h = -\frac{r^2}{4} \) and the point \((0, 0)\). Underneath, the curve \(h = -\frac{r^2}{4} \) there are no fixed points, on the curve there is one fixed point, and above the curve there are 2 fixed points. When \(h = 0 \), the two fixed points occurring change their stability at \(r = 0 \). Namely, saddle-point bifurcations...
occur along the curve $h = -\frac{r^2}{4}$ and a transcritical bifurcation happens at the point $(0, 0)$.