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Abstract. We consider two-dimensional Bernoulli percolation at density p > Pc 
and establish the following results: 
1. The probability, PN(P), that the origin is in a finite cluster of size N obeys 

1 ~(p)a(p) 
lim ~ log PN(P) - 

where P~o (P) is the infinite cluster density, a(p) is the (zero-angle) surface tension, 
and ~(p) is a quantity which remains positive and finite as P~Pc. Roughly 
speaking, ~(p)a(p) is the minimum surface energy of a "percolation droplet" 
of unit area. 
2. For all supercritical densities p > Pc, the system obeys a microscopic Wulff 
construction: Namely, if the origin is conditioned to be in a finite cluster of 
size N, then with probability tending rapidly to 1 with N, the shape of this 

cluster--measured on the scale ~/N--will  be that predicted by the classical 
Wulffconstruction. Alternatively, ifa system of finite volume, N, is restricted to a 
"microcanonical ensemble" in which the infinite cluster density is below its 
usual value, then with probability tending rapidly to 1 with N, the excess sites 
in finite clusters will form a single large droplet, which--again on the scale 
v/N--wil l  assume the classical Wulff shape. 

I. Introduction 

We consider Bernoulli bond percolation on the square lattice in which bonds are 
independently occupied with density p and vacant with density 1 - p .  This model 
is known to have a phase transition at density Pc = 1/2, below which the occupied 
clusters are finite with probability one (w.p. 1) and above which there is a unique 
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infinite cluster w.p. 1. In this paper, we study the finite occupied clusters throughout 
the high-density or percolating phase, i.e. whenever p > Pc. Specifically, we obtain 
detailed estimates on the distribution of sizes and shapes of asymptotically large 
finite clusters. 

In order to motivate our questions and our results, it is worth noting at the 
outset that the study of large finite clusters in the high-density phase of percolation 
has an analogue in other statistical mechanics models. The high-density phase of 
percolation corresponds to the ordered, and hence low-temperature phase of 
models such as the Ising magnet; the infinite cluster density is the analogue of the 
spontaneous magnetization I-FK] (see also [ACCN]). Thus, in a distributional 
sense, the infinite cluster in a percolation configuration corresponds to the 
collection of excess plus spins in a low-temperature plus-state Ising configuration. 
Similarly, an anomalously large finite cluster in a percolation configuration 
corresponds to an anomalously large droplet of minus spins in a plus-state Ising 
configuration; i.e. the asymptotically large finite clusters may be viewed as "droplets 
of the wrong phase." In a more general context, the study of the shapes of these 
clusters is related to the question of crystal formation in other systems: What are 
the equilibrium shapes of crystals of one phase immersed in another? 

1.A. Previous Results. Let us first discuss the size distribution of large finite 
clusters in percolation. This is typically described by the so-called finite cluster 
distribution: 

PN(P) = P~([C(0) I = N), (1.i) 

where P p ( -  ) denotes Bernoulli measure at density p, and I C(0)l denotes the size 
of the occupied cluster of the origin. There has been a good deal of previous work 
on the large-N behavior of PN(P). It has been known for some time that below 
threshold/iN(p) obeys the bounds 

e-Cl(P)S < PN(P) < e-C2(P)N (p < Pc) (1.2) 

in all dimensions, with el(p) and c2(p) positive, finite, dimension-dependent 
constants. The lower bound in (1.2) is trivial; the upper bound was originally 
derived in [HI, and then rederived in [K1] and [AN]. The behavior above 
threshold is of a very different form; for d dimensions, PN(P) is expected to satisfy 

e_C3Cp)u,,-1,/, <__ PN(P) < e-C'cP)scd-1'/" (P > Pc) (1.3) 

with ca(p) and c4(p) positive, finite, dimension-dependent constants. Both bounds 
in (1.3) were originally derived only for p near 1 [KS]. The lower bound was later 
shown to hold for all p > Pc in [ADS]. That the upper bound in (1.3) holds for all 
P > Pc was demonstrated for two dimensions in [K3] (see also [CC2]). Still later, 
in [CCN], an upper bound of the form (1.3) with logarithmic modifications (i.e. 
with e4(p) replaced by c4(p)/log N) was shown to hold in dimensions d > 3 whenever 
p is above a value 1 which was conjectured to coincide with the percolation 

i Very recently, there have been two independent proofs that this value coincides with the half-space 
percolation threshold ([BGN], I-Z]) 



Geometry of Finite Clusters in 2d Percolation 3 

threshold. Recently, in [KZ], an upper bound of the form (1.3) was derived without 
a logarithmic modification, but p is still restricted to lie above the value used in the 
[CCN) proof. In any case, we note that (1.3) has been established completely for 
two-dimensional percolation. 

To our knowledge there has not been any previous work on the distribution 
of shapes of finite clusters in percolation, although there has been work on the 
analogous problem in other systems. As explained above, this problem is related 
to the classic question of determining the equilibrium shape of a crystal of one 
phase immersed in another. Under the assumption that the shape is determined 
only by a single intrinsic property, namely the surface tension (thus neglecting 
extrinsic effects such as gravity), one arrives at the following variational problem: 
For a fixed crystal volume, determine the shape which minimizes the surface energy. 
The solution of the continuum version of this problem was given at the turn of 
the century in the so-called Wulff construction [Wu]: Let ~r(n) denote the surface 
tension of a flat interface orthogonal to the outward normal n. Then the equilibrium 
shape W of a crystal of fixed volume is given by the convex set 

W = {x~Ralx.n < ~r(n) for all n}. (1.4) 

For a crystal of volume V, the linear dimension of the Wulff shape (1.4) is simply 
scaled by the multiplicative factor (VII WI) l/d, where I WI denotes the volume of 
W. That (1.4) is the unique minimizer of the variational problem has been proved 
by Taylor (IT1], IT2]). 

The Wulff construction described above, and variants of this construction which 
account for the effects of gravity [ATZ] or the effects of substrates in the system 
I-W], [ZAT], provide a good explanation of the observed thermodynamic properties 
of equilibrium crystal shapes. Changes in specific features of the Wulff shape have 
been related to various phase transitions: the roughening transition is believed to 
coincide with the disappearance of facets in W; if W' is the Wulff shape for crystals 
in the presence of a substrate (see e.g. [ZAT]), the transition to complete wetting 
can be formulated as the vanishing of IW'l. See [RW], [BN], I-A] for reviews on 
the study of equilibrium crystal shapes in various models; work on the Wulff 
construction for constrained (1 + 1 dimensional) models can be found in [DD] 
and [DDR]. 

On the other hand, from the viewpoint of statistical mechanics, the Wulff 
construction alone does not provide a theory of equilibrium crystal shapes. In 
many microscopic models, it is of course possible to extract an angle-dependent 
surface tension by studying the behavior of asymptotically large surfaces. However, 
it is not entirely obvious that the shapes of finite crystals will be distributed about 
the Wulff shape determined by this surface tension; furthermore, even if this is the 
case, one would like a probabilistic description of the deviation of the actual crystal 
shapes from the Wulff shape. 

There has been progress on a microscopic theory of the Wulff construction for 
the two-dimensional Ising magnet at low temperatures. Minlos and Sinai [MS] 
studied a finite-volume microcanonical system with plus boundary conditions in 
which the magnetization was fixed at a value below the plus-state spontaneous 
magnetization--thereby forcing excess minus spins into the system. Roughly 
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speaking, they proved that in typical configurations at very low temperature, most 
of the excess minus spins form a single large droplet of essentially square shape. 
In this regard, it should be noted that as the temperature tends to zero, the Wulff 
shape W of the two-dimensional Ising magnet tends to a square. More precisely, 
let re(T) be the spontaneous magnetization of the two-dimensional Ising magnet 
at temperature T. Minlos and Sinai studied a system of volume L z with plus 
boundary conditions in the microcanonical ensemble with magnetization 
m = (1 - 2~)m(T), which therefore had an excess volume fraction ~ of minus spins. 
For T very small, they showed that in the Li" ~ limit, a typical configuration 
contains a large (dual) contour Y separating plus and minus spins such that 

[d(7) -- ~zL2[ < c5(T)L 3/2, (1.5) 

[5~ - 4x/~L I < c6(T)L , (1.6) 

where d(7)  denotes the area enclosed by Y, and 50(7) denotes the length of 7. The 
constants cs(T) and c6(T ) tend to zero as T+0. They also had estimates similar 
to (1.5) which showed that the magnetization inside 7 tends to -re(T),  while that 
outside Y tends to re(T) as T$0, thus establishing that "most" of the excess minus 
spins are indeed enclosed by Y. That y tends to the boundary of a square is clear 

from the factor 4x /~L in the length bound (1.6). The Minlos-Sinai droplet theorem 
is thus a microscopic verification of the Wulff construction for the two-dimensional 
Ising magnet in the limit T J,0. 

Simultaneously with the work presented here, Dobrushin, Kotecky and 
Shlosman [DKS] have announced a substantial refinement of the Minlos-Sinai 
result which deals directly with the Wulff construction for the two-dimensional 
Ising magnet and which closely parallels our work on two-dimensional percolation. 
Dobrushin, Kotecky and Shlosman again consider a system of volume L z (with 
periodic boundary conditions) in the microcanonical ensemble at magnetization 
m = (1 -2~)m(T), 0 < ~ < 1/4. Again, they show that in the LT ~ limit, a typical 
configuration contains a large contour 7. However, rather than comparing 7 to 
the boundary of the zero-temperature Wulff shape (i.e. the square), they compare 
it to the boundary, 0 W = 7w, of the actual Wulff shape W at temperature T. (The 
natural means of comparison, namely the Hausdorff distance, is also used in our 
work and will be explained below.) For very low temperature, they show that 
the Hausdorff distance between V and a translate of Vw is bounded above by a 
sublinear power of L; since the length of 7 itself is only of order L, the deviation 
of 7 from ~w--i.e. the ratio of the Hausdorff distance between ~ and 7w to the 
length 50(y)--tends to zero like a power of L. Thus their work is a strong 
microscopic proof of the Wulff construction for the two-dimensional Ising magnet 
at small but positive temperature. As we will see below, the work presented here 
for two-dimensional percolation is complementary to the Dobrushin, Kotecky and 
Shlosman work on the two-dimensional Ising magnet; we do not obtain as sharp 
an estimate on the deviation from the Wulff shape, but we are able to prove a 
microscopic form of the Wulff construction for all supercritical values of the 
parameter p. 

In order to formulate a microscopic Wulff construction for percolation, we 
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must first identify the "crystals of one phase immersed in another" and then define 
a surface tension for these crystals. As mentioned earlier, our candidate crystals 
are just the large finite clusters when p > pc--these are the analogues of the droplets 
of minus spins in a sea of plus spins in the Ising magnet at T < Tc. In the latter 
system, surface tension is the exponential decay rate of the probability of an 
asymptotically large dual surface separating the plus and minus spins. Similarly 
in bond percolation one can define a dual model in which a dual ( d -  1)-cell is 
occupied whenever the corresponding bond is vacant; then the surface tension is 
just the exponential decay rate of the probability of large surfaces composed of 
these dual (d - 1)-cells. More precisely, the zero-angle surface tension is the decay 
rate for dual surfaces spanning large loops in a lattice hyperplane, while an angle- 
dependent surface tension is the decay rate for dual surfaces spanning loops oriented 
at some non-zero angle to a coordinate axis. In both the Ising magnet and 
percolation, one expects that the Wulff shape (1.4) derived from this surface tension 
is not spherical (except at the critical point), reflecting the anisotropy of the system. 

I.B. Statement of Results and Discussion. The upper and lower bounds in (1.3) 
suggest that for p > Pc, log PN(p)/N ~d- 1)/d should approach some well-defined value 
as N T ~ .  Our first result is that this is indeed the case in two dimensions; moreover, 
we can identify the limiting value in terms of other quantities in percolation. Here 
we will briefly define these quantities; precise definitions are given in Sects. 2 and 
3. First, let Poo(P) denote the infinite cluster density at bond probability p. Next, 
let a(n, p) be the angle-dependent surface tension at bond density p, obtained by 
considering the probability of dual surfaces oriented orthogonally to the outward 
normal n. We will denote the standard zero-angle surface tension at density p by 
a ( p ) -  a(~r, p); i.e. a(p) is the surface tension for a surface along the ~x-axis, and 
thus orthogonal to the outward normal dy. Note that, in two dimensions, a(p) is 
just the inverse of the on-axis dual correlation length. We also define a new quantity, 
~o(p), which we call the Wulff constant, as follows. Consider the Wulff variational 
problem, as described earlier, for the surface tension a(n, p): namely, given a(n, p), 
what is the minimum surface energy of a "droplet" of unit area? (Recall that the 
surface energy of a droplet is the integral of the surface tension a(n, p) over the 
boundary of the droplet.) We define ~z~(p) to be the ratio of this minimum surface 
energy to the zero-angle surface tension a(p). At first, it may seem rather unnatural 
to divide out the surface tension a(p); however, this is the appropriate scaling from 
the viewpoint of critical phenomena. Indeed, we can show that for all p 

__< ~o(p) < 4, (1.7) 

so that ~(p) remains finite as PJ, Pc. Our first main result is: 

Theorem 1. In the two-dimensional Bernoulli bond percolation model on the square 
lattice, for every p > Pc 

lim 1 logPN(p)_ ~(p)a(p) 

Of course, this theorem completely determines the leading critical behavior of the 
decay rate of the finite cluster distribution as P+Pc. 
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It is worth noting that we also prove upper bounds on PN(P) which are 
somewhat stronger than Theorem 1 implies: namely 

P>=N(P) < exp { -- [ ~ ( p ) a ( p ) / ~ ]  x / ~ [ 1  -- N -  1/4(log N) 4] }, (1.8) 

where P>_u(p)>PN(p)is the probability of the event N < l C ( 0 ) l < o o .  (See 
Theorem 1.A in Sect. 4.) However, we cannot yet supplement this with a lower 
bound which is stronger than that implied by Theorem 1. 

Our next set of results constitute a microscopic proof of the two-dimensional 
Wulff construction for all p > Pc. Roughly speaking, we show that in the (unlikely) 
configurations in which the origin is in a finite cluster of size exceeding N, this 

cluster assumes a Wulff shape of linear scale ~ .  Of course, this shape will 
not be achieved exactly on the scale of the lattice; the best that can be expected 
is that, with high probability, the cluster achieves this shape on scales which are 
large relative to the lattice spacing, but small relative to the size of the cluster. 

To be precise, consider the angle-dependent surface tension, a(n,p), for 
two-dimensional percolation at density p. Let W = W(p) be the unit area continuum 
Wulff shape for surface tension a(n, p), defined via Eq. (1.4), and let 7w = 7w(P) be 
the boundary of this shape. 2 We use the Hausdorff distance to compare the 
boundary of our cluster to a translate of 7w. The reader should recall that the 
Hausdorff distance between two fixed curves, Yl and 72, is simply 

Dn(yl,72) = max { max min I x -  y,, max min I x -  yl}.  (1.9) 
XEyl yEY2 XEy2 yEYl 

We use the metric 

P(7x, Y2) = min Dn(Tt, Y2 + x), (1.10) 
x~R 2 

i.e., we translate the curves until their Hausdorff distance is minimized. 
Our second principal result is: 

Theorem 2. Consider the two-dimensional Bernoulli bond percolation model on the 
square lattice with p > Pc, and condition on the event N < IC(O)l < ~ .  Then there 
exists a function r/(N)= q(N;p), with r/(N)~O monotonically as N "~ ov, such that, 
with conditional probability tendin9 rapidly to one with N, there is an occupied circuit 
of dual bonds, Y, encirclin9 the origin satisfyin9 

N1 p(Nx//N/P~ooT~,7) < q(N). 

In the statement of Theorem 2, and in later theorems, we use the term " tending 
rapidly to one With N" to mean tending to one faster than any inverse power 
of N. 

For future reference, it is worth noting that we also derived a variant of 

z We will often make no distinction between a curve y and its image 
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Theorem 2 in which the final inequality is replaced by 

P 7w, =< F/(N), (1.11) 

where d (7 )  denotes the area enclosed by 7, and O(N) is another function which 
tends monotonically to zero with N. 

In order to prove Theorem 2, we first had to establish a stability result for the 
Wulff variational problem, which may be of independent interest. Roughly 
speaking, the stability result says that if a curve, 7, enclosing unit area, differs from 
the minimizer by an amount q > 0 (i.e. if P(Tw, 7) > ~/> 0), then the value of the 
surface energy functional for ~, exceeds the minimum by some strictly positive 
function f(q). See Theorem 5.2 for more details. It is worth noting that such a 
stability result will fail for dimension d > 2 due to the existence of arbitrarily thin 
filaments. Thus an extension of the microscopic Wulff construction to higher 
dimensions may require a new formulation of the problem. 

In Theorem 2, we achieved a cluster of large size by directly conditioning on 
its existence--i.e, by conditioning on the event N<[C(0)[  < oo. While this is 
perfectly reasonable from the viewpoint of percolation theory, it is rather unnatural 
from the viewpoint of statistical mechanics. In the latter case, one would restrict 
to a microcanonical ensemble, as in the Minlos-Sinai droplet theorem [MS] and 
in the Wulff construction theorem of Dobrushin, Kotecky and Shlosman [DKS]. 
In percolation, the analogue of restricting to the microcanonical ensemble at the 
"wrong magnetization" is to condition on the event that the volume fraction of 
the infinite cluster which intersects a large finite box has the "wrong density," e.g. 
this volume fraction is strictly less than P~(p). In order to compensate for this, 
the configurations must have more sites in finite clusters within the box than would 
be the case in the unconditioned measure. Roughly speaking, our result states that 
under this conditioning, typical configurations have "most" of these excess sites 
in one connected component: a single droplet. Moreover, this droplet behaves like 
the cluster in Theorem 2: with probability tending to one in the size of the system, 
the drople t - -when appropriately scaled--approaches the Wulff shape. 

More precisely, let Coo = Co~(~o) denote the sites of the (w.p. 1 unique) infinite 
cluster in configuration 09. Let A L c  7Z, 2 denote the square of side L centered at 
the origin. We wili condition on the event 

FL(2 )={o  ~ ,C~c~ALIIALI <(1 -2 )Po~(p )}  (1.12) 

with 0 < 2 < [diam (y~)]- 2, where diam (Tw) is the maximum distance between any 
pair of points in ~w. Here our 2 is analogous to the ~ in the Ising problem discussed 
above. The occupied bonds of ~ partition the sites of Z2\Co0(o9) into an infinite 
number of connected components: the finite clusters. Those finite clusters which 
are sufficiently large (presumably of linear dimension exceeding the correlation 
length) qualify as "droplets of the wrong phase." Our single-droplet result is: 

Theorem 3. Consider the two-dimensional Bernoulli bond percolation model on 
the square lattice with p > Pc, and condition on the event FL(2 ) with 0 < 2 < 
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[diam(yw)] -2. Then there exist functions ~bL(2 ) = q~L(~.;p), (L(2) = ( L ( J , ; p )  and 
#L(2) = #L(2; p) tendin9 monotonically to zero as L T 0% such that, with conditional 
probability tendin9 rapidly to one with L, there is an occupied circuit of dual bonds, 
7, satisfyin9 

(') p( , . .  ~ , ~ )  --< ~(~), 

(c) Int (y) contains a connected cluster of size exceedin9 P~(p) [1 - #L(2)]2IAz[. 
It is worth remarking that in order to prove Theorem 3, we first required an 

estimate on the probability of FL(2)--which is, of course, just a large deviations 
estimate for the random variable [ Coo n AzI/IAL[. For 0 < 2 < [diam (~'w)]- 2, our 
estimate is: 

1 log  Pv[FL(2)] = - lim (1. 13) 
L ~  /_, 

See Theorem 6.1 for more details. 
This paper is organized as follows. In Sect. 2, we set our notation and review 

a few basic results in percolation theory. Section 3 is devoted to geometrical 
preliminaries: There we define the angle-dependent surface tension for percolation, 
and use it to construct a norm on R 2. This norm is then used to formulate the 
Wulff variational problem for percolation. Theorems 1, 2 and 3 are the contents 
of Sects. 4, 5 and 6, respectively. Some of the more tedious aspects of our stability 
result for the two-dimensional Wulff problem are relegated to appendices. 

2. Notation,  Definit ions and Preliminaries 

In this section, we will set our notation and review some of the basic results in 
percolation. 

We will consider the square site lattice 7/2 , the dual square site lattice 
1 1 ~_~.2. (7i,)2 _ 7/2 + (~, ]), and the plane Points of (7/,)2 will sometimes be denoted 

+ ~)E(7/ ) , however, with a �9 superscript, e.g. for x = (xl, x2)~7/2, x* - (xl + 1, x2 1 , z. 
for notational convenience, we will often omit the ,. On 7/2 and (7/,)2, we will use 
the lattice L 1, L 2 and L ~176 norms: i.e. for x = (Xx, x2)eT/2, 

Ixll = Ixxl + Ix~l, (2.1a) 

Ixh = ~ + x~, (2.1b) 
Ixl~o = max {Ix11, [x21}. (2.1c) 

On R z, we will generally use the Euclidean (i.e. L 2) norm, in addition to another 
norm to be introduced in Sect. 3. For  S c 7/2, I SI will denote the cardinality (i.e. 
number of points) of S, while for R = •2,  [ R I will denote the Euclidean area of R. 

For  7: [0, T]  . _ .~ .2  a continuous curve in R 2, let 5r denote the (Euclidean) 
arclenoth of 7- Recall that the curve y is said to be rectifiable if s < o0. Let J 
denote the set of rectifiable Jordan curves in R 2. For  y e J ,  let Int(y) c R 2 denote 
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the interior of 7, and let 

d (7 )  = lint (7)[ (2.2) 

denote the (Euclidean) are enclosed by 7. 
The set of all bonds between nearest-neighbor sites of Z z, i.e. pairs x, y~7/2 with 

I x -  Y]I = 1, will be denoted by 13 z. A path in •2 is a sequence (finite or infinite) 
of bonds bl,b2,...,with no repetitions, such that b, and b,+ 1 have a common 
endpoint. A contour in ~2 is a finite closed path: bl, b2 . . . . .  bN such that the initial 
endpoint of b~ is the final endpoint of bN. Two paths are said to be disjoint if they 
have no bonds in common. For  x, y~7/, 2, a set S c 7~ 2 is said to separate x from 
y if every path from x to y includes at least one bond with an endpoint in S. 
Similarly, the set of all bonds between nearest-neighbor sites of (7/.*) 2 will be 
denoted by ~*;  we can, of course, define paths, contours, etc. in ~ ' .  

The nearest-neighbor Bernoulli bond percolation model on the square lattice 
at density p is defined by independently choosing each bond of ~2 to be occupied 
with probability p or vacant with probability 1 - p. We denote by Pp the product 
measure on t2 at density p, and by Ep the expectation with respect to Pp. We will 
often suppress the subscript p in P~ and Ep. For  Sz, $2 c 7/.2, we say that $1 is 
connected to $2 in the configuration co if there is a path of occupied bonds in co 
from a site in S 1 to a site in S 2. If such a path occurs within a set of bonds B c B2, 
we say that $1 is connected to Sz in B. The maximal connected subsets of co are 
called the (.occupied) clusters of co. Note that, as defined, these clusters are sets of 
sites in Z 2, not bonds in 13 2. For  x J / 2 ,  we denote by C(x) = C(x; co) the cluster 
containing x in co. If x is not connected to any other site by occupied bonds, then 
C(x)={x}. Consistent with the notation defined above, IC(x)l denotes the 
cardinality of C(x). 

In d dimensions, bond percolation at density p is dual to (d - 1)-cell percolation 
at density 1 - p. In two dimensions, the model is self-dual: if a given b~13 2 is vacant 
(occupied), then we can view the unique b*~B* which intersects b as occupied 
(vacant). It is often convenient to view a given configuration co not as a collection 
of occupied and vacant bonds, but rather as a collection of occupied bonds and 
occupied dual bonds. Then it is clear that each finite cluster of co is surrounded 
by an innermost contour of occupied dual bonds in co. Henceforth, unless otherwise 
specified, when we speak of clusters of co, we will mean clusters connected by 
occupied bonds, and when we speak of contours in co, we will mean occupied dual 
bond contours. 

Next we review a few basic results concerning bond percolation on the square 
lattice. It is known ([BH],  [Har],  [K2])  that the model has a phase transition at 
density Pc = 1/2, below which the occupied clusters are finite w.p. 1 and above 
which there is a unique infinite occupied cluster. Let us denote the infinite cluster 
by C~ = C~(co) c 77. z. The order parameter for the transition is the infinite cluster 
density: 

Poo(P) = Pp(0eC~). (2.3) 

It is known that (in d = 2), P~(p)+O continuously as P+Pc [R]. 
The analogue of the two-point correlation in a spin system is the connectivity 
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function: For x, yGTZ, 2, the connectivity event is 

t~,y = {e)Ix is connected to y by occupied bonds} (2.4a) 

and the connectivity function is 

zx.,(p) = Pp(tx,,). (2.4b) 

Similarly, for x*,y*e(~*) 2, the dual connectivity event and dual connectivity 
function are given by 

t~*y, = {oIx* is connected to y* by occupied dual bonds}, (2.5a) 

Pp(t~.,y.). zx*,y.(p) = * (2.5b) 

By duality (in d = 2), zx*,y*(P) = z~,y(1 - p). For p < Pc, the correlation length, ~(p), 
is defined by the behavior of the on-axis connectivity function: 

lim 1 log %,(.,o)(P) 1 . (2.6) 
. - ~  ~ n = - ~ ( p ) '  

furthermore, even for the off-axis connectivity function, ~(p) provides the following 
a priori bound: 

.Cx,y(p ) ~ e-D/r ~. (2.7) 

It is known that ~(p) < oe for p < Pc [K2], and that ~(p)T oe continuously as p'~pc. 
(For a general review of t e properties of z, see e.g. [CC1] or [G]). A final useful 
fact concerning the connectivity function is that it obeys the Hammersley-Simon 
inequality ([H], IS]): For x, ye7Z 2, let S c 7Z 2 be a surface which separates x from 
y. Then 

z~,r(p ) < ~ z~,~(p)Zz.y(p). (2.8) 
zeS 

The behavior of the finite cluster distribution for percolation has already been 
discussed in some detail in the introduction. Here, let us just set some additional 
notation. We define 

PN(P) = Pp(I C(0)] = N), (2.9a) 

p_<N(p)= ~ p.(p), (2.9b) 
n<N 

peN(p)=  ~. p.(p). (2.9c) 
N<n<~ 

Although Theorem 1 of the Introduction is stated in terms of Ps(p), the quantity 
with which we will be working most often is the tail of the finite cluster distribution, 

P~N(P)- 
Finally, we review a few general notions and inequalities. We denote the 

indicator function of an event A c ~ by ~A: 

{10 ifcoeA (2.10) 
~A(O~) = if 6oq~A" 
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Definition 2.1. Let ml, ('02~:~Q" There is a natural partial order on s defined by the 
relation o)1 <~ (D 2 if all occupied bonds in ~o 1 are also occupied in m2. An event 
A c ~ is said to be positive or increasing (respectively, negative or decreasing) if 
"~a is nondecreasing (respectively, nonincreasing) with respect to this partial order. 

The Harr is -FKG inequality ([Har], [FKG])  says that if A 1 , A  z c s are both 
positive (or both negative) events, then 

Pp(A1 c~ A2) >_- Pp(A 1)Pp(A2). (2.11) 

Definition 2.2. Let ~ s A  c ~2 and B c ~2. The event A is said to occur on the set 
B in configuration co if A occurs in a~ restricted to B, regardless of the configuration 
in ~ 2 \ B ;  m o r e  precisely, we define 

A I B = { ~ A I & ~ A  for all c3 such that & -- ~o on all bonds in B}. (2.12) 

Two events A a, A 2 ~ .(2 are said to occur disjointly, denoted by A ~ o A2, if there are 
(bond) disjoint sets on which they occur: 

A l O A 2 =  {~OeAlC~A213B1 ,BzcNz ,Bxc~B2=~,ooEA~IB~c~A2In~} .  (2.13) 

Similarly, three or more events are said to occur disjointly if they are pairwise 
mutually disjoint, e.g. 

AI ~ Az ~ A3 = ( A l  o A 2 ) n ( A 2  o A 3 ) n ( A l  o A3). (2.14) 

The van den Berg Kesten inequality [BK] says that if A I ,  A 2 c .(2 are both 
positive (or both negative) events, then 

Pp(A ~ o A 2) < Pp(A1 ) Pp(A 2). (2.15) 

The inequality (2.15) was extended to the case of the A~ being intersections of 
positive and negative events by van den Berg and Fiebig [BF]. By induction, an 
analogue of (2.15) clearly holds for the disjoint union of three or more (say) negative 
events. 

3. Geometrical Properties 

In this section, we define the surface tension and establish some geometrical 
properties of its angular dependence. We then formulate the Wulff variational 
problem for percolation. 

We begin by defining the zero-angle surface tension, a(p). Since we are in two 
dimensions, we need only consider the (on-axis) dual connectivity function 
T~,~,,o).(p), as defined in Eq. (2.5). The following proposition is an immediate 
consequence of the duality relation Zx.,y.(p ) - -  zx,y(1 - -  p) and well-known properties 
of the ordinary connectivity function (ef. Eq. (2.6) and (2.7)). 

Proposition 3.1. For the two-dimensional Bernoulli bond percolation model, the limit 

1 �9 
a(p) = - lira - log Zo*,(,,o)*(P) 

n ~  n 

exists with a(p) > 0 for  p > Pc and a(p),[0 as P ~ Pc. Furthermore, for  finite n 

z~*,(.,o~*(P) =< e-~(P)~. 
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The limiting constant in Proposition 3.1 is called the surface tension by analogy 
to similar quantities in spin systems, e.g. the Ising ferromagnet. There one considers 
spin configurations in a cube of scale L in which the top and bottom regions 
correspond to distinct pure phases separated by an interface. The Gibbsian weight 
of such configurations--relative to the total weight of all allowed configurations-- 
has the purported scaling e-'Ld- 1. The constant ~r has the interpretation of an excess 
(surface) free energy or surface tension. In percolation, rather than studying the 
Gibbsian weight of configurations with an interface, one considers the probability 
that the top surface of a cube of scale L is disconnected from the bottom. This 
has the dual representation of an interface separating the top and bottom of the 
cube. In d = 2, it is readily established that this probability has the desired scaling 
(modulo power law corrections in front of the exponential factor), with ~ given as 
in Proposition 3.1. By duality, it is clear that a (p )=  [4(1 _p)] - l ,  where ~(p) is 
the correlation length (cf. Eq. (2.6)). What is not so obvious, but has nevertheless 

~[~ (p)] where ~'(p) is the above been established [CCGKS],  is that a(p)= 1 , -1, 
threshold correlation length, i.e. the decay rate of a truncated connectivity function. 
The higher-dimensional problems are not on quite this sound a footing; for further 
discussion of the zero-angle surface tension in d > 3, see [ACCFR],  [CC2]. 

An angle-dependent surface tension can be defined by considering the behavior 
of the off-axis dual correlation function z**.x.(p). Although such a surface tension 
(or the correlation length) has been discussed previously, both in the context of 
percolation [CC1] and spin systems [CCS], here we will treat the problem from 
a somewhat more geometrical perspective. 

Proposition 3.2. Consider the two-dimensional Bernoulli bond percolation model at 
density p. 
A) Let x s Q  2 (where ~ denotes the rationals) and let k be any integer for which 
kx~7l 2. Then the limit 

1 
g(x; p) - - lira - -  logz**,nkx,(p) 

,-~o nka(p) 

exists and is independent of k. Furthermore, Vx6Z 2, g(x; p) provides the a priori 
bound: 

B) For each p, the function g(x)= g(x; p) has the following properties: 
(i) Scaling (or homogeneity): For each 2e~,  

g(,~x) = 121g(x). 

(ii) Symmetry: g(x) is invariant under interchange of the components of x or sign 
reversal of either component of x; that is, if x = (xl, x 2 ) ~  z, 

g(X)=g(--X 1,X2)=g(X1, --X2)=g(--X1, --X2)=g(X2'X1)" 

(iii) Convexity: For each x, y~ll~ 2 and each 201~, with 0 < 2 <- 1, 

g(2x + (1 -- 2)y) < 2g(x) + (1 - 2)g(y). 

Proof. Let x ~  2, and denote by k (say) the smallest integer for which kxe7Z 2. 



Geometry of Finite Clusters in 2d Percolation 13 

Then existence of the limit 

lim _1 log~, kx,(p ) (3.1) 
~l~CO n 

follows from the (log) subadditive inequality 

%,(., +.2)kx*(p) > * = , ro,.,2k~,(p). (3.2) 

Denoting the limit in (3.1) by ka(p)g(x; p), (3.2) directly implies the a priori bound. 
Furthermore, the scaling in (3.2) shows that g(x; p) is independent of k, and 
establishes property (i). Property (ii) is a 7/z lattice symmetry which g(x) clearly 
inherits. Convexity is established by observing that for x,y~ff~ z, 2~Q, with 0 < 
2 __< 1, and m any integer for which 2 m x 6 Z  2 and (1 - 2)my67Z 2, we have 

TO*,m()~x+(1 -) .)y)* ~ * * ---- "CO*,m2x*T'm2x*,m().x + (1 - ).)y)* 

�9 * ( 3 . 3 )  = TO*,m2x*TO*,m(1 - A)y*~ 

which, after logs and limits, is the desired result. �9 

Collecting the above properties, we have: 

Corollary. The function g(x) may be extended to a convex, continuous function on 
~ 2, where it defines a norm equivalent to the Euclidean norm. 

Proof. Convexity implies that g(x) is continuous on ~2; hence it may be extended 
to a continuous function on all of R2, where it enjoys properties (i), (ii) and (iii). 
Obviously, g(0) = 0. Furthermore g(l, 0) = g(0, 1) and convexity imply that if x # 0, 
then g(x) # O. Finally, convexity at 2 = �89 and the scaling property imply the triangle 
inequality. Hence, g defines a norm on R z. Finally observe that if X E ~ - ~  2,  then 

22[x12 _-< Ixl~o -<_ g(x) < Ixlx 5 v/21xh, (3.4) 

which demonstrates the equivalence of g to the Euclidean norm. �9 

Remark. The norm g is, of course, closely related to the angle-dependent surface 
tension. Assume we have an interface oriented at an angle 0 to the O~-axis. It is 
customary to track the direction dependence of the surface tension in terms of the 
outward normal n = ~0 to the interface: a(n; p) = a(Oo; p). In two dimensions, since 
there is only a single tangent vector, t = ~, to the interface, it is just as convenient 
to track the direction dependence of the surface tension as a function of ~. The 
relationship between our g and the conventional direction-dependent surface 
tension is 

a(P)g(~r; P) = a(~0; p), (3.5) 

where, as usual, tr(p) is the surface tension for an interface oriented at angle 0 = 0 
to the ~x-axis: that is, a(p)=a(d0=dr;p)  , so that g ( d r = d A p ) = l .  It is also 
conventional to define a(~0; p) only as a function of the normal vector n = d0, 
whereas here we define g for all x E ~  z. If x = r~, = r(cos 0, sin 0), then 

g(x; p) = rg(d,; p) = Ixl2g(d~; P). (3.6) 



14 K. Alexander, J. T. Chayes and L. Chayes 

Thus the ratio of g to the Euclidean norm is a measure of the angle-dependence 
of the surface tension. 

Now let us formulate the Wulff variational problem for percolation. Given a 
continuous curve 7: [0, T] ~ ~2,  it is possible to define the g-length of Y by analogy 
to the (Euclidean) arclength s Let ~ = (t o . . . . .  tN), 0 = to =< tl _<--." =< tN = T, 
denote a partition of [0, T], and let 7e~ = (y(to) . . . . .  7(tN)) be the corresponding 
polygonal approximation to ~. The g-length of y at density p is given by 

gv(7) = sup gp(]~) =-- sup ~ g(y(t,+ 1) - y(t,); p). (3.7) 

We will sometimes omit the subscript p in our notation for the g-length. By 
equivalence of the norms, it is clear that gp(~) < oo if and only if ~(3~) < oo (i.e. 
rectifiable). We remind the reader that J is our notation for the set of rectifiable 
Jordan curves in ~2,  and ~(37) denotes the Euclidean area enclosed by 7. 

Guided by the underlying lattice model, one is led to study the (continuum) 
variational problem of minimizing the surface energy subject to the constraint of 
enclosing unit area: 

~(p) = inf {gp(y)ld(7)= i}. (3.8) 
"e~j 

We call ~(p) the Wulff constant at density p. It is easy to see that the constraint 
~r = 1 may be replaced by the inequality d (y )  > 1 without changing the value 
of the functional, i.e. 

~(p) = inf {gp(~)Id(7) > 1}. (3.8') 
y~J 

We note that (3.8) or (3.8') is a problem of the isoperimetric type, but that it 
is somewhat more difficult since the length and area of 7 are measured in 
different--though equivalent--norms. However, from this equivalence and the 
solution to the (Euclidean) isoperimetric problem, it follows immediately that 

, /~__< ~(p)  < 2 x / ~ .  (3.9) 

Indeed, using the sharper upper bound in Eq. (3.4), one easily obtains the improved 
estimate 

~(p) == 4. (3.9') 

What is not so obvious is that there is a minimizer of (3.8) and that this minimizer 
is unique in J .  This a consequence of the Wulff construction [Wu], and general 
existence [T1] and uniqueness theorems [T2] due to Taylor, which we state here 
only for the case at hand. 

Theorem 3.3. Let or be the set of all rectifiable Jordan curves in IR 2, let gp('}') denote 
the density-p g-length of the curve 3) as defined by Eq. (3.7) and Proposition 3.2, let 
~r denote the Euclidean area enclosed by y, and let ~(p)  be the Wulff constant 
as defined in Eq. (3.8). Then there is a unique curve ?w = Y~(P)~ ~ with ~r = 1 
such that 

, , , (p )  = g~(v.~). 
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Furthermore, this curve is given by the Wulff construction, i.e. ?w is the boundary of 
the Wulff shape (1.4) for the surface tension a(E0; p) given in Eq. (3.5). 

It will turn out that in order to prove a microscopic Wulff construction for 
percolation, we will need somewhat more than Theorem 3.3: In addition, we will 
need a stability result which says that if 7 is a unit area curve at a Hausdorff 
distance q > 0 from ?w, then tgp(7)-gp(7,)l => f(r/), where f is a strictly positive 
function. In order to establish this, we will first prove that ?w is the unique minimizer 
of (3.8) over a somewhat larger class than just Jordan curves. See Sect. 5 for more 
details. 

4. Bounds on the Finite Cluster Distribution 

In this section, we establish our principal analytic result: (exponentially) optimal 
bounds on the finite cluster distribution for all p > Pc, as contained in Theorem 1 
of the introduction. Although Theorem 1 is stated in terms of PN(P), here we will 
be working with the somewhat more natural tail of the finite cluster distribution, 
P =>N(P). In particular, we will first derive Theorem 1 for P>=N(P); then, at the end 
of this section, we will use a variant of the subadditivity argument in [KS] to extend 
the result to PN(P). The proof of Theorem 1 divides naturally into two parts: upper 
bounds and lower bounds. As in previous work on the finite cluster distribution, 
the proof of the upper bound is more difficult, although here we obtain sharper 
upper bounds than lower bounds. 

4.A. 7he Upper Bound. The results of this subsection is: 

Theorem 1.A. In the two-dimensional Bernoulli bond percolation model on the square 
lattice, for every p > Pc and all N e Z  + sufficiently large 

P>=N(P) < exp { - [ o g ( p ) a ( p ) / ~ ]  x / ~ [ 1  - N -  1/4(log N) 4] }, 

where P~o(P), cr(p) and o(p) are the infinite cluster density, surface tension and Wulff 
constant, as defined in Eq. (2.3), Proposition 3.1 and Eq. (3.8). 

Our strategy for proving Theorem 1.A is as follows: If the origin is in a cluster 
of size at least N, then there must be some dual ring ? surrounding the cluster�9 
This cluster can be thought of as a "broken off" portion of the infinite cluster; 
it therefore should have density roughly Poo(P) [ADS]. Now there are two 
possibilities: either 7 is large enough to enclose a cluster of the "correct density": 
d ( 7  ) > N/P~; or 7 encloses an "overdense" cluster: ~(7) < N/P~. In the former 
case, we get the desired bound simply by estimating the probability of the ring 7, 
omitting any estimate on the probability of the cluster itself. Our estimate on the 
ring probability is given in Lemma 4.1. In the latter case, we use a large deviations 
estimate (Lemma 4.2) to show that an "overdense" cluster is far too costly. We 
then combine these lemmas to give a proof of Theorem 1.A. 

Before obtaining our ring estimate, let us introduce the notion of an m-skeleton 
of a (dual) lattice contour 7. To this end, let U c ~2  denote the unit ball in the 
g-norm (cf. Proposition 3.2): 

U = { x ~ 2 1 g ( x ) <  1}, (4.1) 



16 K. Alexander, J. T. Chayes and L. Chayes 

and, for m e N ,  let m U  denote the m-ball: 

m U = {mx[x  ~ U}. (4.2) 

Observe that, by the symmetry and convexity properties ofg,  these sets are convex 
and four-fold symmetric. Next, consider the lattice m-ball 

llJ,,, = m U  c~ 2g 2. (4.3) 

It follows from the convexity and symmetry of U that  1g m is a •2-connected set. 
We denote  the external boundary  of this set by ~U,,: 

01U m = {x~TZ,2\Uml3x'~lLl m with Ix - x' l l  = 1}, (4.4) 

and the union of the set and its boundary  by lLrm: 

1LI,~ = ~J~ u ~?llJm. (4.5) 

Finally, for x* ~(2g*) 2, we denote  the translat ion of these sets by the lattice vector 
x* by llJ,,(x*) and DUm(x*): 

r llJm, (4.6a) I J ~ ( x * )  = ~* 

T ~?lLI m. (4.6b) 0 ~ ( x * )  = ~* 

It is worth observing that if x * e 0 U m ( 0 * ) ,  then by Proposi t ion 3.2A, 

r~*.x*(P) < e -  r (4.7) 

Now suppose that V:[0, T]  --, lR 2 is a self-avoiding (dual) lattice loop encircling 
the origin, i.e. that  the image of 7 is a contour  in 13~ enclosing 0". Let  t o = 0 and, 
for definiteness, let us take ~(0) = Soe(2g*) 2 to be the lowest site of~, on the positive 
y*-axis. For  n > 1, we define 

t ,+l  = inf{t > t,17(t)eOll,,,('s,)}, (4.8a) 

s,+ 1 = 7(t,+ l) (4.8b) 

provided that t, + 1 exists. Thus s,, + 1 is the earliest site of (7Z*) 2 on 7 after s, which 
is a 9-distance at least m units from s,. We let J = J(m;y)  be the largest n such 
that t,, and hence s,, exists. In other  words, the sequence (So . . . . .  s j) exhausts the 
curve 7 and 9 ( s s -  So)< m. We call the sequence 

S,,(7 ) = (So, s~ . . . . .  s s, So) (4.9) 

the (lattice) m-skeleton of ~. It is clear that each contour  ~ has a unique m-skeleton. 
On the other  hand, a given sequence of (dual) points (Sk) represents the m-skeleton 
of many  distinct contours.  We let 

F("~) = {y [ S,i(7) = (Sk) } (4.10) 

denote the collection of all contours  with m-skeleton (s~). 
Our  ring estimate is as follows: 

Lemma 4.1. Let  A o E Z  + and consider the event 

N(Ao) = {col3 an occupied dual ring y surrounding the origin with A(y)> Ao}. 
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Then for all p > Pc and A o sufficiently large, 3c = c(p) > 0 such that 

Pp[~(Ao) ] <=exp --~(p)~(p) 1 At/4 j j .  

Proof. We begin with a rather straightforward coarse-grained Peierls estimate 
using the notion of an m-skeleton defined above. The subtlety occurs in relating 
the result of the Peierls estimate to the area A o. 

First, let/~(~k) denote the event that there is a dual contour in F~)(cf. Eq. (4.10)): 

F,~ /-~(~) = {e)13 an occupied dual ring 7~ (~k)}. (4.11) 

Obviously, the event/%" is contained in the disjoint union of the successive events (sk) 
t s~k , S k + 1" 

~m t* or* . . . . .  t* (4.12) (Sk) ~ -Sl,S2 ~S2,$3 SJ,SI" 

Hence by the van den Berg Kesten inequality and (4.7), we have 

Pp[/~(~k)] =< e-*tP)(s+ 1)m. (4.13) 

Now given that ~(Ao) has occurred, there must be dual contour V surrounding 
the origin with an m-skeleton (Sk) of J~Jmin(Ao) points. For fixed J, let 
~(J ;m)  denote the collection of all sequences (sg) of J points which form the 
m-skeleton of some curve surrounding the origin. Let us determine the size ]~(J;  m)[ 
of ~ (J ;  m). First, it follows from the definition of an m-skeleton that given a 
particular point sk, the number of possible "target points" is [(~U m [, which is easily 
bounded above by ~cim with e.g. ~c~ < 8re. Hence, for fixed initial point So, the 
number of m-skeletons is less than (Klm) J. Furthermore, it is clear that so cannot 
have y*-coordinate exceeding �89 < mJ. Thus 

[ :,~(J; m)[ __< mJ(~qm) J. (4.14) 

We have 

~(Ao ) = ~) (,.) /am (4.15) (sk)' 
J ~ Jmin(Ao) (sk)~fc~(J;m) 

Thus, by subadditivity of the measure and the bounds (4.13) and (4.14): 

J > : J m i n ( A o )  (Sk)~,(/)(J;m) 

< ~ mJ(~qm)%- ~'~2 
J>=Jmin(AO) 

<-~ K2 mJmi~e - ~  (4.16) 

for m sufficiently large. Here ~c 2 = x2(P) < oo. 
Now we must determine Jmin(Ao). TO this end, let (sk) be the m-skeleton of 

some dual contour which, if occupied, would contribute to the event ~(Ao). Let 
y(~k) denote the unique (continuum) polygonal curve with the sequence of vertices 
(sk), in order. In general, V(~) will not be self-avoiding, although it will be the union 
of a finite number of self-avoiding polygons, and possibly also degenerate polygons. 
Let us denote by sg(7(~k) ) the area of the union of these polygons. It follows from 
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the variational principle (cf. Eq. (3.8)) and concavity of the square root  that 

g(?ok)) > ~ ' r  (4.17) 

Roughly speaking, we would like to bound 9(7(sk)) from above by Jm, and bound 
d(?~sk)) from below by A o. However,  technically, neither of these bounds is quite 
correct. 

First, Jm is actually a lower bound on g()%)) since the lattice points of alLI,, 
are a g-distance greater than m from the origin. However,  this is easily rectified 
by noting that 011,. c U,,+ 1- Then, taking into account  that sj may be separated 
by as much as m + 1 from So, we have 

g(7(s~)) < (m + 1)(J + 1). (4.18) 

Next, we note that the area of any curve 7eF("~) can differ from d(~,~)) by at 
most  the area of (J + 1) m-balls: 

~ ( 7 ~ )  + (J + 1)tlLI,,f > d(T).  (4.19) 

Since the 9-norm is equivalent to the Euclidean norm, we may write [1LI m [ < ~c3(p)m 2, 
where 0 < ~c3(p) < oo. Then, if7 "contributes" to the event .~ we have ~ (? )  > A o, 
so that (4.19) implies 

s~r ) >__ A o - ~c3(J + 1)m z. (4.20) 

Thus, by Eqs. (4.17), (4.18) and (4.20), Jmln satisfies 

(m + 1)(Jmi . + 1) > ~(p)x/Ao - ~c3(Jmi . + 1)m 2. (4.21) 

Using x/1 - x > 1 - x for 0 < x < 1, (4.21) implies 

Jmln ~ ~'r ~ o  __ K4 (4.22) 
m + l  

for some 0 < ~c4(p) < oo. This, together with (4.16), gives us a bound on Ppl-~(Ao)] 
in terms of m. Now, however, we can choose m to optimize (4.16) subject to the 
constraint  (4.22). A nearly optimal solution occurs when we take m = Ao ~/4, from 
which the statement of the lemma follows. �9 

The  previous lemma provides our  basic estimate for the case in which the ring 
encloses area ~'(?) > NIPs. Next, we at tend to the case in which the ring encloses 
area s~'(7)< N/Po~. To this end, we denote by cg~,(cn) the set of sites in the 
configuration co which belong to clusters of size no larger than n: 

(~ < n(fJ)) = { X~7~,21C(x; (2)) ~ /'1}, (4.23) 

and, for any finite set A c Z 2, we denote by f<=.(A) the fraction of sites in A 
belonging to clusters no larger than n: 

f<=,(A) - I A c~ cg_<,[ (4.24) 
IAI 

Note  that, by translat ion invariance, P ~ ,  = E(f~.) .  The following lemma shows 
the deviation o f f~ , (A)  from P~, .  
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L e m m a  4.2. Let  n e Z  +, n > 2, and A cTZ z, IAI < oo. Then  fo r  every  se(0,  1), 

c2 21A1 , 
P(If<-.(A)-P<-.l>s)<clexp rl2 J 

where c 1 = 18 and c z = 1/324. 

Proo f .  Let S o denote  the 3n x 3n square S o = {(x1,x2)~7~,2[O~x1, x2 ~ 3n} and 
consider the set of t ranslat ions of So :Sy= T3"y(So) which disjointly tile the 
la t t ice-- i .e ,  consider the translat ions Sy with y = (ml, m2), ml and m z integers. (See 
Fig. I.) 

[1] [2]  thereby We further divide each S r into nine smaller (n • n) squares, Sy , Sy ,- - �9 -r'~t9] 
forming nine disjoint sublattices. Observe  that  if u~S~ kj and yeS,k, l (y # y') then the 
events C(u) < n and C(v) < n are independent.  

Let A c 2~ 2, I AI < ~ .  Fo r  S~ k~ n A # ~ ,  consider the r a n d o m  variables 

VtRI _ I ~  ,-, vtkl ,-., A I, (4.25) y - - i , ~ < n  t ~ , y  ~ 

and define 

Observe  that  

while 

bk = max  S tk~ c~ A I. (4.26) --y 
Y 

E EV~ u]] = e <=n I Sty kl n A J, 

V~ k] < b k < (n + 1) 2 < 4n 2 

(4.27) 

(4.28) 

X 2 

S(o,1) 

So 

11] 
(1,1) 

121 
(1,1) 

191 
(1,1) 

S(1,0) 

ID 

Fig .  1. A d i s j o i n t  t i l i ng  o f  t he  l a t t i ce  

X 1 
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(provided that n > 2). We have 

E[(Vt~k]) 2] = E [ .... s~]~a~ llc(")l --<"11c(~)1 --<"] 

<IStklc~AIE[ ~ alc(~)l__<~ 1 = - - y  

ueS[yk ] c~ A 

= I S~ k] n t~] tk} 2 AIE[V r l = P _ < ~ I S  r r 
Thus 

o r  

Var (V~ k]) < (P__<, - p2 , )  i S[~] n A I 2 

=< (�88 stk] n A I = n21 '~tkj c ~ - r  A l, 

(4.29) 

(4.30) 

P (Z~ > ). < 2 exp �9 2b 
2s 2 1 

3 

22 2vFRII (4.34) 

Substituting the estimates (4.28) and (4.31) into Bernstein's inequality (and using 

2 x / ~  = ~IAI) ,  we have 

P (vtrk]--E[vtk]]) >-~elZl < 2 e x p  324n 2 , 

where we have used e < 1 to facilitate the calculations. Summing over all k, we 
obtain the desired result. �9 

Corollary. Let A c Z 2, I AI < oo. Suppose P > Pc and consider the Bernoulli 
configurations at density p restricted to the set A. Let  N be an inteaer with 
P~(p)IAI < N < I AI and define P >_ NIA(P) to be the probability that on the set A there 

then 

Var (V[r kl) < n21AI. (4.31) 
y 

Take ae(0, 1). Now it is clear that  whenever If__<n(A)-P__<n[ > e (or equivalently 
~V tkl e lA I), then on when ] ~r.kt v -- P 6. I S~ kl n A l) ] > at least one of the nine sublattices, 

the "excess" is larger than ~el A l: 

[ f  <_,(A)- _ > ~ 3 k =  such that ~y (V [k],_y - EEV~kl]) _> ~elAI. (4.32) 

Now, according to a lemma of Bernstein (see e.g. [B]), if Z1,Z2  . . . . .  ZR are 
independent random variables satisfying 

maxiZjI  < b  and ~ V a r ( Z j ) < R s  2, (4.33) 
J 
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is a connected cluster of size at least as large as N. Define x = x(p, N, A) > 0 by 

Po~(p)[A[ =(1  - x ) N ,  

and, for n~7Z, +, define A, by 

P~. (p)  = 1 - (1 + A.)P~(p). 

Suppose A, < x/(1 - x) and n < N. Then 

P~Nla(P)==clexp - C 2 ~ T - \ l _ ~ c  A, , 

where cl and c2 are defined in the statement of Lemma 4.2. 

Proof. Let A c Z 2, I A[ < oo. If  (in some configuration) the set A contains a 
connected cluster of size at least as large as N, then the volume fraction of remaining 
sites in A is no more  than  

1 - - - - = N  1 P~o (4.36) 
IAI 1 - x '  

Thus  for n < N, a cluster of size N could only emerge if 

Po~ 
f<,(A) < 1 - - - .  (4.37) 

- = 1 - t r  

Evidently 

P~NIA(P) <= P f~_.(A) <= 1 -- 1 -- x 

[ < P P<=,-f<=,(A) > P~ 1 A, . (4.38) - / s  

The  s ta tement  in the corol lary follows directly f rom (4.38) and f rom L e m m a  4.2. 

We will now establish our  upper  bound.  

Proof of Theorem 1.A. Take  p > Pc, and suppose that  the origin belongs to a finite 
cluster. Then  the origin is sur rounded  by an occupied ring of dual bonds.  
Fur thermore ,  exploiting the exponential  decay of the dual connectivity function, 
w.p.1 there is a finite outermost occupied dual ring encircling the origin. 3 Let us 
enumera te  all dual  lattice rings abou t  the origin: G, ~ = 1, 2 . . . . .  and define the event 

f~ = {ogIG is the ou te rmos t  occupied dual  ring surrounding the origin}. (4.39) 

It is impor t an t  to observe that  given the event ?,, the statistical behavior  of the 
configurations in Int  (G) is identical to that  of the uncondi t ional  measure  restricted 

3 In d > 2, the analogous statement may fail due to a possible condensation of closed filaments of 
dual (d -  1)-cells. See [CC1, Sect. 3] for further discussion 
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to Int (G). Finally, we will denote by Rs the event 

Rs = U f~. (4.40) 
~: .~r = S 

Let us define S(K) = (NIPs)(1 - K) and 

K* = K*(N) = N -  1/4 (log N) ~. (4.41) 

Obviously, the event {N < IC(0)I < oo} may be (disjointly) decomposed according 
to whether the outermost occupied dual ring surrounding the origin encloses area 
greater than or less than S(~c*). In the former case, we omit any estimate on the 
probability of the cluster itself, and simply use Lemma 4.1 to obtain the upper 
bound: 

< �89 { - [ ~ o ( p ) ~ r ( p ) / ~ ]  x / N i l  - N - 1/4(log N) 4] } (4.42) 

for N sufficiently large. In deriving (4.42), we have used the fact that, for N large 
enough, the leading correction in Lemma 4.1 is dominated by the difference between 

x/1 - ~c* and 1 - x*. 
We now focus our attention on the "smaller" rings i.e. rings enclosing area 

less that S(~c*). Let x < K* be any number such that S(x) is an integer. Given the 
event Rs~, the configuration inside must now struggle to produce a connected 
cluster at least as large as N. An estimate on the probability of this is the exact 
topic of the corollary to Lemma 4.2; namely [ )2] 

( l - - x ) (  ~c B, NP~ , (4.43) P[N<lC(O) l<oo lRs ( j<c lexp  --Ce n2 \ I - - K  

where n is any integer smaller than N. Let us choose n to satisfy 

A < �89 (4.44) 

Using the known upper bound on P c ,  (Eq. (1.3)), this can be accomplished without 
violating n <= N (or x <__ x*) by choosing 

n = H(log �89 2 (4.45) 

for some huge constant H, provided N is large enough to ensure N >> (log N) 2. 
Thus we have, for N large enough, 

P [N < IC(0)l < oolRstJ ~ cle -~t~)N (4.46a) 
with 

K 2 1 
~b(x) = (const.)((logic)2 ( 1 -  x)).  (4.46b) 

Obviously the worst case is x = x*, for which we get 

P [N  < C(0) I < ~ IRs<,,)] <= cl exp [ - (const)x/~(log N)4]. (4.47) 
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Since there are only of the order of N possible values of x such that S(x) is an 
integer, we can multiply the right-hand side (4.47) by N to bound the probabilities 
of the "small ring" cases. For N large enough, the result is smaller than the 
right-hand side of Eq. (4.42), which establishes the desired result. �9 

4.B. The Lower Bound. The result of this subsection is: 

Theorem I.B. In the two-dimensional Bernoulli bond percolation model on the square 
lattice, for every p > Pc 

lim inf ( log  P__> N(P)'] > ~(p)a(p) 

where Po~(P), a(p) and ~(p) are the infinite cluster density, surface tension and Wulff 
constant, as defined in Eq. (2.3), Proposition 3.I and Eq. (3.8). 

Our strategy for proving the lower bound on P=> N is straightforward: We will 
first explicitly construct an approximate (lattice) Wulff curve of occupied dual 
bonds at essentially the right probability. We will then demonstrate that with 
probability of order unity (more precisely Podp)) the origin belongs to a cluster 
at least as large as N. To simplify the final proof, and for later reference, we will 
start by establishing the following auxiliary result concerning the event ~, (cf. Eq. 
(4.39)). 

Lemma 4.3. Suppose p > Pc. Let e~F,~ + and M~T! +. For M large enough 36(e)> 0 

such that, with probability exceeding exp [ - (1 + e)a(p)~(p)w/ M], the event f ~ occurs 
for some r~ which lies entirely outside a (convex) shape enclosing area exceeding 
[1 + ~]M. 

Proof. We divide •2 into square unit cells centered at the sites of (Z*)2; to avoid 
(zero-probability) possible ambiguities, we suppose that each cell includes its upper 
and right-hand boundaries, as well as its lower right-hand corner, but no other 
portion of its boundary. Then each point in ]R 2 belongs to a unique cell (or site 
of (7Z*)2), and, for u, v~R 2, we may define 

O(u, v)= P(the site of u is connected to the site of v 
by a path of occupied dual bonds). (4.48) 

Note that we have suppressed the p-dependence in our notation for O(u, v). Although 
O(u, v) is not strictly translation invariant, it is approximately so. For example, one 
may easily obtain 

1 
(1  - p)20(O, u - v) <__ O(u, v) < - -  0(0, u - v). (4.49) 

(1 - p)2 
Using (4.49), it is straightforward to show that if rE]R and v e R  z, then 

l i r a (  l~ ). (4.50) 
r---~ go 

Of somewhat more relevance is the "half-space" version of O(u, v). Let u, v~R 2. 
The line passing through u and v divides ~2 into two half-spaces, the "upper" 
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one of which contains x 2 = - [ - O 0  (or, in case of a vertical line, xl = + ~).  
We define 0(u, v) to be the probability that u and v are connected by a path of 
occupied dual bonds which travels exclusively via sites whose cells have non-zero 
intersection with the upper half-space relative to u and v. We define O_(u,v) 
analogously in terms of dual connections in the lower half-space. It is not terribly 
difficult to show that 

l i n a ( l ~ 1 7 6  (4.51) 

Indeed, e.g. for v with rational coordinates, the existence of some limit no smaller 
than trg(v ) follows from subadditivity. That this limit is a9(v )  may be established 
by considering the restriction of the connectivity events to one-dimensional regions 
of finite width; this provides a decreasing sequence of rates which converge to 
trg(v ) as the width of the regions increases. Any one of these rates may be used as 
an upper bound on the rate for the half-space connectivity. The extension to 
irrational coordinates follows immediately from convexity. (See e.g. [CC1] for 
arguments of this sort.) 

Let 7w denote the Wulff curve centered at the origin. (See Theorem 3.3 for a 
definition of 7w.) We will parameterize 7~ by t~[0, T]. Let ~=( to , . . . , tN) ,  
0 = t o =< t x =< ...=< t N = T denote a partition of [0, T], and denote by r~'[~] the 
(convex) polygonal curve obtained by joining the points 7(t j) and 7(tj + 1) by straight 
line segments. As the partition becomes more refined, we get 

d(7[~ el) T 1 (4.52a) 
and 

g(7[~])T ~.  (4.52b) 

Consider the curve 7 *[e] which is 7[~ e] (linearly) rescaled by x/2/(d(7[w~'])[ 1 + d(7  ~e])]). 
This curve encloses area 

2 
d(7*[e] )  = 1 + d ( y ~  ml) - 1 + ~5(~); (4.53) 

its g-length is 

2 < ~ o /  2 
g(7*[~]) = -~ ,[ ~] ) ~Ww ~ / d ( y ~ ] ) [ 1  + d(7[we])] N/ d(7[we])[ 1 + d(7[w~])] 

1 + 6(~) < w(1 + �89 (4.54) 
~ / 1  - 6(.@) 

if the partition is sufficiently refined. Now let us again focus on the lattice. By the 
Harris-FKG inequality, a curve of occupied dual bonds which encircles the origin 

and (save for the vertices) stays out of the polygon 7 *t~'l scaled up linearly by x / ~  
can be produced with a probability exceeding 

N 
[ I  O[~/M?*t~l(tJ), ' /Mv*I~lttv - - . w  , j+lIJ,'l (4.55) 

1=0 
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where O( - ) denotes if( - ) or _0( - ) as appropriate. At the expense of an additional 
finite (M-independent) factor, one can actually ensure that the curve stays 
completely outside the polygon. Then, using the existence of the limit in (4.51) and 
the bound (4.54), it follows that for M sufficiently large, the M-independent factor 

times the estimate in Eq. (4.55) exceeds e x p [ -  (1 + ~)a(p)~(p)x/M ], which is the 
desired result. �9 

We will now prove our lower bound on P=>N- 

Proof of Theorem 1.B. Let p > Pc, e~(0, 1) and N~2g +. Then by Lemma 4.3, for N 

sufficiently large, with probability exceeding e x p [ -  (1 + e ) a ~ o ~ ] ,  the event 
f,  occurs for some r~ lying outside a convex shape which contains more than 
(1 + 6)(NIPs) sites. By Lemma 4.1, it is clear that we will not significantly degrade 
our estimate by assuming also that d ( r , ) <  (const)N, for some sufficiently large 
constant. Recalling that the measure for those bonds with both endpoints in 
Int(r,) is unconditioned, let us now consider the behavior of Bernoulli 
configurations restricted to Int(r,). 

We will first partition the sites of Int(r~) into two (deterministic) sets. To this 
end, let n >> 1 be an integer with n small compared to the linear dimensions of r~ 
(e.g. we may regard n as a small power of N), and let D > 1 be a constant of order 
unity. We write Int(r , )= A,(n)u W_(n), where A,(n) consists of those sites in Int(r~) 
which are a distance greater than 2Dn from r,. For any Bernoulli configuration 
in f~, the sites in A,(n) may be further partitioned into two disjoint categories 
depending on the size of the cluster to which they belong: each x eA,(n) has either 

(1) IC(x)l _-< n; or 
(2) I C(x) l > n. 
Let us first show that category (1) does not exhaust too many of the sites of 

A,(n). Indeed, by Lemma 4.2 

cz6ZP~lA~(n)l ~ 
P(f=<,(A,(n)) - P <=, > �89 < C a exp - 9n 2 ] .  (4.56) 

In particular, if n is a small power of N, and N is sufficiently large, then [A,(n)l 
exceeds (1 + �89 Using the fact that P=<, < 1 -  P~, and taking 6 < 1, it 
follows that, with (conditional) probability tending rapidly to one, more than 
(1 + ~6)N sites belong to category (2). 

Next, we claim that, with probability tending rapidly to one with N, all of the 
sites of category (2) belong to a single cluster. Indeed, let us suppose that two sites 
in category (2) belong to distinct clusters. Since, by definition, both of these sites 
are further than 2Dn from r,, and both belong to clusters of size exceeding n, then 
(for appropriate choice of D) there must be a dual interface in Int(r,) of linear 
extent exceeding Dn. However, the probability of such an interface is less than 
(const)NZe-o,~, which tends rapidly to zero with N. 

Now we note that the absence of a dual interface is positively correlated (in 
the sense of FKG) with the event {f<=,(A~(n))--P<=,<�89 Thus with 
(conditional) probability rapidly approaching one, more than (1 + 16)N belong to 
a single cluster. Furthermore, given the pair of events discussed above, it is not 
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difficult to see that the origin belongs to this cluster (as does any site in A,(n)) 
with probability not smaller than P~(p). 

The simultaneous occurrence of an f~ of the appropriate type, and the three 
events discussed above, produces the event ~ >IC(0)I ~ N; all of this occurs 

with probability exceeding (cons t )exp(- (1  + 2e)a~ N ~ f f s  with the constant 
uniform in N. This establishes Theorem 1.B. �9 

4.C. The Combined Bound. Putting together the results of this section, we have: 

Theorem 1'. In the two-dimensional Bernoulli bond percolation model on the square 
lattice, for every p > Pc 

1 ~(p)a(p) 
lim log P __< N(P) - 

Remark. We have no intuition about the nature of the convergence of 

--logP~N(P)/x/-N tO ~(p)a(p)/,v/ff-~(p)--we do not even know the sign of the 
correction. Of course, the derivation in the proof of Theorem I.A provides a lower 
bound on the difference. Similarly, if we had good (though not necessarily optimal) 
lower bounds on ~ , ~ ,  which were uniform in direction, these could be used to 
obtain an upper bound on the difference. We consider the nature of these 
corrections to be an important open problem. 

For  the time being, we will have to make due with the tautology: 

Corollary. 3z(N) > l [ ~ ( p ) a ( p ) ] / ~  + log P >__N(P)/x//N[ > 0 such that e(N)$0. 
Explicitly, V N, 

{ . . . .  [-~(P)~(P)-]/~'~ 

<= p>N(p) <= exp(--[1--~(N)]V"-'(P)~(P)],/N3. (4.57) 
- L ~ J  ) 

The reader may recall that Theorem 1 of the Introduction was expressed in 
terms of the actual finite cluster distribution PN(P)- Obviously, since PN(P) < P >=N(P), 
(4.57) automatically implies an upper bound on PN(P). In [KS], a subadditivity 
argument was presented which shows that upper and lower bounds of the form 
e -b(p)'/N on P>_N(P) also give lower bounds of this form on PN(P). Here, however, 
we need a slight refinement of the Kunz and Souillard estimate to ensure that we 

do not degrade the constant ~(p)a(p)/x/~(p).  This is provided in the following: 

Proposition 4.4. Suppose that PN(P) is known to obey the bound 

PN(P) >--- e-b(P)'/N 

with b(p) positive. Suppose also that there exists a positive, finite constant a(p), and 
positive function e(N) with e(N)$ O such that PeN(P) satisfies 

e-  t 1 + am l.(v),/~ =< p >__ N(P) < e-  [ 1 - e ( N )  ] a ( p ) ' , / N  
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Then either e(N) < O(N +3/2) or there are positive, finite constants kl(p) and k2(p) 
such that 

PN(P) > kl(P) e x p { -  [1 + k E ( p ) ~ ] a ( p ) v / N  }. 
= e(N)N3/2 

Proof. As in the [KS] proof, the key is the subadditivity relation: 

Ps+M > PN PM. (4.58) 
N + M  = N M 

Let us choose 6(N) = De(N), with D a constant of order unity to be determined 
later. By the upper and lower bounds on P z n(P), we have 

P >=N~I -~(m) - P >__N > e-a(p)[1 + e*(N)][1-3(N)ll/2jN _ e-a(p)[1 -e(N)IJN, (4.59) 

where 
e*(N) - e(N(1 - 3(N))). (4.60) 

By monotonicity of e(N), we may replace e(N) in the second term on the right-hand 
side of (4.59) with e*(N). Then, choosing the constant D so that 

[1 + e*(N)] [1 - 6(N)] 1/2 < 1 - e(N) - �88 (4.61) 

Eq. (4.59) implies 

P >=N(1 -~(m) -- P ZN > ( c o n s t ) x ~ b ( N )  e-a(p)v~. (4.62) 

Noting that P =>n(1 -~(m)- P =>n represents the sum of 3(N)N terms, let us define 
M* by 

PN-M* = max{PN_MI0 < M < 3(N)N}, (4.63) 

so that (4.62) gives 

P s -  M* > (const) e -  a(p),/~. (4.64) 
,/N 

By (4.64) and the subadditivity relation (4.58), we have 

(const) 
Pn > 3(N)N3/2 e-~(P)'/NPM,. (4.65) 

Thus, using the known lower bound 

P u* > e-b(v)4--~ ~ e-b(v) O('/~(N)N, (4.66) 

we finally obtain 

PN > (const) e_a(p),~ o +(b(p)/a(p)) ~,/~3(s)l (4.67) 
= 6(N)NS/2 

Recalling that 3(N)= O(e(N)), this is the desired result. Note that, although the 
leading exponential decay rate has been preserved, this lower bound on PN has a 
larger correction to the leading rate than does the lower bound on P=>N- �9 
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Noting that we may always take e(N) > N -3 / 2  in the Corollary to Theorem 1', 
the lower bound of Theorem 1 now follows from Theorem 1', Proposition 4.4 
and the nonoptimal lower bound (1.3) on PN. 

5. A Microscopic Wulff Construction 

In this section, we give our first formulation of the Wulff construction for 
two-dimensional percolation, as contained in Theorem 2 of the Introduction: 
Namely, we condition on the (unlikely) event N < I C(0)[ < ~ ,  and show that with 
probability tending to one as N tends to infinity, an interface surrounding the 

origin is arbitrarily close, in distance measured in units of x/N, to some translate 
of the Wulff shape scaled by ~ An alternative formulation, in terms of a 
"microcanonical ensemble," is given in Sect. 6. 

Not surprisingly, in order to prove the microscopic Wulff construction, we 
require a stability result for the Wulff minimum: Namely, if 7 encloses unit area 
and if p(~,~, 7) > ~/> 0, then the value of the surface energy functional for 7 differs 
from the minimum by a strictly positive function f(r/). Were this not the case, then 
the cluster could assume a shape which differs substantially from the Wulff shape 
at essentially no cost. Two points are worth noting: (1) Although our stability 
result is sufficient for our purposes, it is far from optimal--see the Remark following 
the proof of Theorem 5.2. (2) Given the uniqueness of the minimizer, this stability 
may seem obvious; however, it actually fails for d > 2. This suggests that one must 
formulate another, less stringent notion of the "difference between two contours" 
in order to prove a higher-dimensional microscopic Wulff construction. 

This section is organized as follows: The proof of stability is given in Sub- 
sect. 5.A; the Wulff construction (i.e. the proof of Theorem 2) is given in 
Subsect. 5.B. 

5.A. Stability of the Wulff Minimum. As explained above, the principal result of 
this subsection (Theorem 5.2) is that there exists a strictly positive function, f(r/), 
such that if 7 is any acceptable unit area contour satisfying P(Tw, Y) ->-- ~/> 0, then 
0(7) > ~(P) + f(rl). The strategy of our proof is to consider a variant of the standard 
Wulff variational problem (cf. Eq. (3.8)) with the additional constraint p(Tw,~) > r/, 
and to show: (1) an actual minimizer exists for this modified problem; and (2) this 
minimizer is not ~w. By uniqueness (Theorem 3.3), one would then expect that this 
minimizer, not being ~w, must have a surface energy strictly larger than ~(p). 
Unfortunately, it is conceivable--particularly for large r /-- that  the new minimizer 
will be found among a larger class than the rectifiable Jordan curves J ,  so that 
Theorem 3.3 could not be applied. Thus we must first extend Theorem 3.3, i.e. 
extend the analysis of the standard (unconstrained) Wulff variational problem, to 
a larger class of curves. 

Let us define the appropriate "larger class." We remind the reader that Jordan 
curves are closed and non-self-intersecting. Now let J(" ~ J denote the set of all 
rectifiable closed curves in R2, i.e. ) f ' \ J  are the rectifiable closed curves which do 
self-intersect. In order to formulate a Wulff variational problem over • ,  we must 
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generalize the notion of the "area enclosed" by a contour. For V ~ ,  we define 

d ( y ) =  inf {~r t i n t ( F ) }  = inf {d(F)[y t in t ( / - )} ,  (5.1) 
r~J r~ j  

where, as usual, for F ~ J ,  d ( F )  is simply the Euclidean area enclosed by F. For 
polygonal paths, this definition agrees with that given above Eq. (4.17). The first 
step in our proof of stability is to show that, given a chance to vary over X ,  the 
standard Wulff variational problem still has the unique minimizer Vw- 

Proposition 5.1. Let J be the set of all rectifiable Jordan curves in ~2,  let ~f~ be 
the set of all rectifiable closed curves in ~2,  let gp(v) denote the density-p g-length 
of the curve 7 as defined by Eq. (3.7) and Proposition 3.2, let d(V) denote the area 
enclosed by V as dOned in Eq. (5.1), and let ~(p) be the Wulff constant as defined 
in Eq. (3.8). Consider the variational problem 

~*(p) = inf {g~(v)ld(?)=> 1}. 

Then ~,*(p) = ~(p), and, in particular, the unique minimizer of this variational problem 
is the Wulff curve W -= Vw(P), as defined in Theorem 3.3. 

Proof. It suffices to show that if W ~ \ J  and ~r ~ 1, then there is a V'~)r with 
~r > 1 such that #(7')< 9(7)- Actually, we will prove the somewhat stronger 
statement that the minimizer is a convex contour in J .  

We begin by extending the notion of convexity to curves in ~ ( \ j .  Suppose 
that V ~  is parameterized by t~[0, T]. Then we can define the convex hull of V, 
H(V), in the usual fashion: 

n ( 7 ) = { x ~ R 2 l x = 2 y ( t O + ( 1 - 2 ) y ( t 2 ) ; O < 2 < l , O < t ~  < t 2 < T } .  (5.2) 

We say that the curve V ~ e - \ j  is convex if each for F ~ J  such that V = Int(F), 

we also have H(7)~ Int(F). Obviously when re  J ,  this is the usual notion of 
convexity. 

Our strategy is to divide ~ \ J  into two sets: convex and non-convex curves. 
For curves in the latter (and easier) class, we will show that there is a convex curve 
in J which has the same g-length as the original curve, but encloses more area. 
For curves in the former class, we will show that there is a (convex) curve in J 
which encloses the same area as the original curve, but has a shorter g-length. 

For V~.,~r\J (or y e J  not convex), let us define the curve ?n via 

Vn = 0H(y). (5.3) 

It is obvious that VH is rectifiable, since its length is bounded above by the smallest 
circle which circumscribes the convex set H(V). Thus YH is a convex contour in J .  
We will show that the contour Vn, perhaps modified by a scale factor, will provide 
a better variational candidate than the original 7. 

We first show that 

g(vn) < g(Y). (5.4) 

Indeed, let us parameterize the curve VH by st[0,  S]. Let Sl, sz . . . . .  sk be a partition 
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of [0, S] for which .Sig(?n(si)- ?u(si+ 1)) is an approximation to the g-length of ?n- 
We claim that, without loss of generality, we may choose the times si in such a 
way that the points {?n(si)} are extreme points of ?u. For example, if s~ does not 
correspond to an extreme point of ?n, denote by si, and s~,, the earliest time after 
and latest time before s~--using cyclic boundary conditions if necessary--such 
that ?H(sl,) and 7n(s~-) are extreme points of ?n. Obviously this is a refinement of 
the original partition; however, it is seen that this approximation to the g-length 
is identical to that resulting from the partition in which all times between se and 
si,,, including st, are removed. 

Now observe that, by the definition of ?n, all extreme points of 7n are on the 
contour ? itself. Thus, by the reasoning of the previous paragraph, we may take 
the points 7n(s,) to correspond to times tj(i), not necessarily unique, which form a 
partition of [0, T] for the original contour ?. Of course, these times will not, in 
general, fall in order on the contour ?. Thus, a favorable comparison of the 
approximations to g(?n) and g(?) from the partitions (s~) and (t j), i.e. a proof of the 
inequality 

g(?u(si) -- 7n(si+ 1)) =< ~ g(?(tj) -- ?(t j+ 1)), (5.5) 
i j 

amounts to showing that the shortest g-length contour which touches all the 
vertices of a convex polygon passes through those vertices in order. The proof of 
this (which is done graphically) is elementary and identical to that for the Euclidean 
case; for completeness, it has been included in the appendix (Proposition A.1). 
Clearly, Eq. (5.5) establishes the inequality (5.4). 

Now suppose that 7eJ%r is not convex. Then it is easy to see that 

~r < ~r (5.6) 

Indeed, if ? is not convex, we may find a non-extreme point xe?n  and a disk of 
radius a > 0 about x which is disjoint from 7. Half this disk belongs to the interior 
of ?n, and hence 

d(?H) >= d(?)  + �89 2. (5.7) 

We may now rescale the curve ?n by x/~C(?)/~c(Vn) and call the new curve 7'- Then 

d(7 ' )  = d(7),  (5.8) 

while by Eq. (5.4) 

( ) / 
g(7') = g 7n N/ ~(?H ) < g(Tn) <= g(7). (5.9) 

This establishes that the minimizer is convex. 
Now we need only consider those contours ? ~ f ' \ J  which are convex, i.e. 

7n c ?. We will further divide this into two cases: either 7n and 7 are identical, or 
?n is a strict subset of?. In either case, given our definition of the area, it is clear that 

d (?n)  = d(?). (5.10) 

If the sets ?n and ? are identical, that is ?n([0 ,S])=?([0 ,  T]), then the 
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assumption 7 ~ X k J  necessarily implies a continuum of double points. In 
this case, it is quite easy to establish that g(7)> g(YH). If the entire curve is 
double covered, then g(y)>2g(yu). Otherwise, assume without loss of 
generality that 7(0) is not double covered, let t I denote the earliest time 
for which 7(tl) is double covered, and let t z > t  1 be the earliest time for 
which 7(tl) = 7(t2). For re(t1, t2), it is seen that 

g(7) ->-- g(7~) + 2g(7(t 1 ) -- y(t)), (5.11) 

which, together with (5.10), establishes the desired result. 
Finally, consider the case in which 3xe? such that Xr Let us denote 

by a > 0 the g-distance between x and 7u: 

a = rain g(x - y). (5.12) 
yEyH 

Although the inequality 
g(7) ~ g(~) + 2a (5.13) 

is intuitively clear, we have been unable to find a straightforward proof. A 
proof of (5.13) which relies on a g-based Hausdorff measure of the sets 7 
and 7n has been relegated to the appendix (Proposition A.2). Obviously, 
(5.10) and (5.13) imply the desired result, and complete the proof. �9 

We can now prove the necessary stability of the variational minimum. 

Theorem 5.2. Let 9ff be the set of all rectifiable closed curves in ~x 2, let gp(7) 
denote the density-p g-length of the curve 7 as defined by Eq.(3.7) and 
Proposition 3.2, let d(7) denote the area enclosed by 7 as defined in Eq. (5.1), 
let ~(p) be the Wulff constant as defined in Eq. (3.8), and let 7w =Tw(P) be 
the Wulff curve as given in Theorem 3.3. Consider the variational problem 

cz~(p)-k-fp(q) = inf {gp(7)[,N'(7)~ 1;p(7, 7w)> t/}. 

Then for all p > Pc, fp is a strictly positive function. 

Proof. Let (7,1n=1,2 . . . .  ) denote a minimizing sequence of contours in 
.Of. Without loss of generality, we may assume that each y, is translated 
so as to minimize its Hausdorff distance from some fixed Yw, i.e. 
p(7,,7~)=Du(y,,Tw), where the Hausdorff distance D u is defined in Eq. (1.9). 
Also without loss of generality, we may assume that the lengths of these 
curves are bounded: 17,1 < M <  ~ ;  hence the 7n may be parameterized by 
tr 1], where t is proportional to the arclength, i.e. 7,:[0, 1] - R  2. 

It follows from the above properties that (y,) is a family of uniformly 
bounded equicontinuous functions on [0, 1]. Hence, by the Ascoli theorem, 
there is a subsequence--here again denoted by (y,)--which converges uni- 
formly to some 7*EoU. According to Proposition 5.1, it suffices to show that 7* 
is an actual minimizer of this modified Wulff problem and that 7" # 7~. 

First, observe that P(7",7~) > ~/ (and hence y* #7~), since otherwise the 
uniform convergence would imply that the constraint was violated at some 
finite n. 
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Next, let t l , . . . , t  k be a partition of the unit interval, which provides an 
approximation to g(7*). Observing that, for each j ,  

7,(tj) ~ ~*(tj), (5.14) 

it is readily established that 

g(7*) < lim g(7,) = ~ + f(r/). (5.15) 
n ~ c o  

Finally, let F ~ J  be a Jordan curve for which 

~* c Int(F), (5.16) 

and which thus provides an approximation to ~r Since all the contours 
7, live on some finite ball B, it is clear that only finitely many of them have 
points in the (compact) set/~\Int(/-). Using this, it is easy to verify that 

d(7*) ~ lim ~r 1. (5.17) 
~1 --~ o o  

Equations (5.15) and (5.17) show that 7* has all the required properties; thus, 
it is indeed a minimizer. �9 

Remark. Given the variational stability proved above, one is tempted to suspect 
that a stronger statement is true. In particular, a perturbative ("second variational") 
calculation--based on the fact that the Wulffcurve is an extremum--suggests that 

f(r/) = O(q2). (5.18) 

With additional hypotheses on the function g, such results should be 
straightforward to establish; we suspect that (5.18) holds in the general case. A 
strong stability statement of this sort would represent the first (and easiest) step 
in obtaining concrete estimates on various convergence rates which appear in this 
work only as existential quantities. 

In any case, for future reference, we note that for small ~/, 

f(~/) < c~r/, (5.19) 

with, say, ~ < 10. Equation (5.19) is easily verified by using a trial Wulff shape 
with a "spike" of length er/. 

5.B. The Wulff Construction. We now establish the Wulff construction for the 
Bernoulli system conditioned on the event N < I C(0)l < m. Theorem 5.3, below, 
gives the result mentioned in Eq. (1.11); Theorem 2 of the Introduction then follows 
quite easily from Theorem 5.3. 

Theorem 5.3. Consider the two-dimensional Bernoulli bond percolation model on the 
square lattice with p > Pc, and condition on the event N <= IC(0)[ < oo. Then there 
exists a function q(N) = q(N; p), with q(N) ~ 0 monotonically as N ~ ~ ,  such that, with 
conditional probability tending rapidly to one with N, there is an occupied circuit of 
dual bonds, 7, eneircling the origin satisfying 

P 7w, <= q(N). 
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Proof. Take p > Pc and suppose that the origin belongs to a finite cluster of size 
at least N. Then (cf. Eq. (4.39)) the event ~ occurs for some ring r,. Roughly 
speaking, there are only three possibilities for the ring r,: (i) it may enclose 
inadequate area to properly support a cluster of size N; or (ii) it may enclose an 
area sufficient to support I C(0) L > N, but be of an unfavorable shape; or (iii) (most 
probably) under rescaling, it may actually be close to the Wulff shape. To deal 
with the second--and most troublesome--possibility, we will employ the 
variational stability derived in Theorem 5.2. In order that this can be best exploited, 

the correct scale for the comparison shape is not necessarily N ~ ,  but rather 
the scale of the ring itself. Ultimately, the system will select a ring of the proper size. 

In order to quantify the above discussion, let us assume that N is large, and 
recall the definitions of x*(N) and e(N) from Eq. (4.41) and the corollary at the 
end of Sect. 4. Let f(~/) = fp(q) be the "stability function" given in Theorem 5.2, 
and define t /=  r/(N) = ~/(N; p) to be the smallest possible number for which 

f(l~/) > 4[e(N) + x*(N)]. (5.20) 

The three possibilities for the event f ,  are: 
i) r~ encloses area smaller than [1 - x*(N)]N/Po~, 

ii) r~ encloses area exceeding [1 - x*(N)]N/P~, but p ( r J ~ ,  7w) > ~l, 
iii) r~ encloses area exceeding [1 - x*(N)]N/Po~ and p ( r J ~ ,  Yw) < ~l. 
Case (i) has been discussed in the proof of Theorem 1.A. Under these 

circumstances, the event I C(0)l _-_ N occurs with probability not larger than 

e x p [ -  O(x/N(log N)')] (cf. Eq. (4.47)). 
We will handle case (ii) by a variant of the argument used in the proof 

of Lemma 4.1: We will bound from above the probability of observing an r, 
satisfying the conditions of case (ii) by summing over all possible m-skeletons of 
such curves. First, we observe that if 7 and 7' are fixed contours, then 

"P(~', ~w) --< D,~(7, ~') + P(Y, 7~), (5.21) 

where Du is the (untranslated) Hausdorff distance. Thus, if m is not large compared 
with r/times the typical length scale of the rings r,, then the m-skeletons of these 
rings will also have a reasonable separation from the Wulff minimizers. 

Let us follow the reasoning of Eqs. (4.11)-(4.22). If a given m-skeleton takes d 
steps, the cost is at least e -~Jm. This quantity (multiplied by the insignificant 
combinatorial factor mJ(8nm) J) must be summed over the allowed range of J. 
Although this necessarily means that the smallest term dominates, let us start by 
summing away J > J*, where J* is the least integer satisfying 

d*m > 2 ~ ~ ;  (5.22) 

not surprisingly, this tail is negligible relative to P >_N. Thus, we must perform the 
summation 

e- "S(mJ)(8nm)S, (5.23) 
Jmin  ~< J ~ J* 

where Jmin is determined with the help of the variational principle. The sum in 



34 K. Alexander, J. T. Chayes and L. Chayes 

(5.23)--which again is essentially the first term--wil l  provide our bound on case 
(ii). (Cf. Eq. (4.16)). 

Next we derive a lower bound on Jml," Let us suppose that hm = hm(r,) is the 
m-skeleton of some lattice curve r, in category (ii). Now, according to Eq. (4.18), 
the g-length of an m-skeleton of J steps satisfies 

(J -I- 1)(ra + 1) > 9(hm). (5.24) 

Thus it suffices to obtain a lower bound on g(h,,). We consider two cases: 
(a) d(hm) > ~r 
(b) ~r < d ( G  ). 

By (4.20), in the second (and more difficult) case, we can replace condition (b) by 
(b') d ( r , )  - (const)Jm 2 < d(hm) < d(r,) .  

In both cases, we will use the condition 

P -- , 7w > r/. (5.25) 

First let us attend to case (b'), which will require more stringent conditions on 
m. By (5.25) and the observation (5.21), we have 

h, = D f hm r, "~ p (  ~ , ? w ~ > r / -  n - -  , -- . (5.26) 

Although the Hausdorf distance between r, and its m-skeleton cannot exceed m, 
this distance is not quite the quantity appearing on the right-hand side of Eq. (5.26). 
However, 

{ h,, r~ "~ 1 // r '~ 
D n - _ _  , - -  O n . ~ h m ,  ) 

< _ _  
= / a  

1 [2m+Jml d~(r~)11 ] (5.27) < 

Now using the lower bound on sO(h,,) from condition (b'), together with the facts 
d(r~) > [1 - tc*(N)]N/P~ and Jm < 2 ~ ~ ,  we can bound the right-hand side 

of Eq. (5.27) by Am/v/~(G), where A > 2 is a constant of order unity. Thus we 
obtain 

h,. Am 
p (  , ,?w~ > t/ (5.28) 

\ x / d ( h . )  / d ~ ) ~ ) "  

Recalling that ~ scales like x/N, let us choose m to be the largest integer 
which satisfies 

Am _ _ <  1 = vf(~l), (5.29) 
~-d(r~) 
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with v a (small) constant of order unity to be determined later. In any case, by 
(5.19), we may easily choose v small enough to ensure 

so that (5.28)-(5.30) imply: 

vf(�89 <= �89 (5.30) 

( h,. , 

P /  , ~  7w/=~t/�9 (5.31) 
\x /d(hm)  ) 

Then by the variational principle and the stability Theorem 5.2, we have 

9(hm) _>- ~(1 + f ( � 8 9  > ~(1 + f(�89 - (const)Jm 2. (5.32) 

Now suppose instead that d(hm)> sC(r~) (i.e. case (a)). Then (5.25) and the 
observation (5.21) give 

hm D f hm r~(r~)) .(- . I  �9 

\ , /d(rD / 

Here we can simply use the fact that the Hausdorff distance between a curve and 
its m-skeleton is bounded by 2m to obtain 

P - ~ , ~ ' w  >r/ - - > g q ,  (5.34) 
\ Jd ( rD  / 

where the final inequality follows from (5.29) and (5.30) and the fact that A > 2. 
Since ~(h,,) > d(r,) ,  the curve in the first argument of p in (5.34) has more than 
unit area. Thus here the variational inequality and the stability Theorem 5.2 directly 
imply that 

g(hm) > w(1 + f(�89 d x f ~  ). (5.35) 

Evidently case (a) gives a stronger bound on g(hm) than does case (b'); thus we can 
use (5.32) in both cases. 

By (5.24), (5.32) and the category (ii) condition: d(r~) > [1 - x*(N)qN/Poo, the 
minimum J satisfies 

(5.36) 

Next, one can use the bounds (5.22), (5.30) and (5.20) to translate (5.36) into an 
inequality concerning mdmi n alone. (See the analogous manipulations in Eqs. 
(4.21)-(4.22)). It is then straightforward to demonstrate that if a sufficiently small 
v is selected in Eq. (5.30), then, for N large enough, the sum in (5.23) is bounded 
above by 

�89 - cr~ N,,/~P~(1 + f(�89 - x*(N))], (5.37) 

so that (for N sufficiently large) the probability of observing case (ii) is no more 
than twice this amount. 
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Using the worst case scenario (4.57) for lower bounds on P>__u(p), it is seen 

that the conditional probability of case (ii) does not exceed exp [ - (const)(x*(N)x/~)], 
which tends rapidly to zero. As discussed earlier, the conditional probability of 
case (i) is far smaller than this. Thus the only reasonable prospect is case (iii), 
which is a subset of the event described in the statement of this theorem. �9 

As a corollary to the above theorem, we obtain Theorem 2 of the Introduction: 

Proof of Theorem 2. We must produce a function q'(N), tending monotonically to 
zero with N, such that 

3 p(x/N/Poo?w, ?) =< r/'(N). (5.38) 

To this end, let N" be chosen so that 

' ~ ( 1  2clogN--"~ > ~N/Poo(1 + 2~(N)), (5.39) 
EN"] TM )= 

where the constant c is given in Lemma 4.1, and let us define r/" via 

N " =  N(1 + q"). (5.40) 

(For example, (5.39) and (5.40) are satisfied if we choose 0" = (const)(N- 1/4 log N + ~(N)) 
with a sufficiently large constant.) It follows from Eq. (5.39), Lemma 4.1 and 
Eq. (4.57) that 

P [f,, d(r~) > N"/P~ IN < C(0) < oo] (5.41) 

is negligibly small for N sufficiently large. From this, and the proof of Theorem 5.3, 
we see that essentially the only f,'s which contribute to the event {N < C(0) < oe} 
are those for which the ring r, satisfies: 

P - -  ,?w <tt  (5.42a) 

and 

1 - ~c*(N) < ~ < 1 + q". (5.42b) 

However, for such rings, obvious scaling properties and the observation (5.21) imply 

, J ) = P -- , 7w 
k,,/ N/P~ / ~ P~d(r,) 

( < [ l + r l , , ] r p  ~ r" ,7,~ +Dn yw, 
= L \x/~/(r,) Poo~(r~ 7~ 

=< [1 + q"] [r/+ (K*(N) + r/") diam(7~)]. (5.43) 

The result follows by defining 1'/' via the right-handside of Eq. (5.43). �9 
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6. A Single Droplet Theorem 

In this section, we give a second formulation of the Wulff construction, as contained 
in Theorem 3 of the Introduction. Recall that in Sect. 5 we conditioned on the 
event N-_<[C(0)I < oo. Here we focus on a somewhat different set of (unusual) 
circumstances which result in the formation of a Wulff shape: We consider a large 
square, A L, centered at the origin: 

A L = {(xl, x 2 ) ~ Z 2 l -  L/2 < x i ,x  2 < + L/2} (6.1) 

and examine the configurations in which AL has an atypically low infinite cluster 
density. In particular, we will examine the configurations FL(2) in which the infinite 
cluster density in AL is depleted by a volume fraction 2: 

FL(2 ) {~0! C~ } = < (1 - 2)P| . (6.2) 
IALI 

Our principal result (Theorem 3) is that, under such circumstances, with probability 
tending to one as L tends to infinity, the system develops a large dual contour 
which (1) encloses area roughly 21ALl; (2) is approximately of the Wulff shape, 
measured in units of the linear dimension of the contour; and (3) contains a single 
large droplet of roughly 2Poo(P)IALI sites. 

In order to prove Theorem 3, we must first estimate the probability of the 
event FL(2) on which we are conditioning. This is a large deviations estimate, 
which is given in Theorem 6.1. Since the physically relevant case is 
0 < 2 < )-c =- [d iam(7,) ] -  2, we restrict our large deviations estimate to these values 
of 2. However, it is also possible to obtain estimates for 2S[2o 1]; see the Remark 
following the statement of Theorem 6.1. Once the large deviations estimate has 
been established, the proof of Theorem 3 closely parallels the proofs of various 
theorems in Sects. 4 and 5; therefore, we omit many of the repetitive details. 

The large deviations estimate is: 

Theorem 6.1. Consider the two-dimensional Bernoulli bond percolation model on the 
square lattice with p > Pc. Let FL(2 ) be the event defined in Eq. (6.2) and take 
0 < 2 < ~.c = [diam(Tw)] -2. Then 

lim 1 log Pp [FL(2)] = -- x/~a(p)~(p), 
L-'-~. oo L 

where a(p) and ~(p) are the surface tension and Wulff constant, as defined in 
Proposition 3.1 and Eq. (3.8). 

Remark. It is easy to see that 

diam(Tw) _-< x/~ (6.3) 

so that the restriction in this theorem is no worse than 2~(0,�89 Since our 2 is 
analogous to the 23 in the Ising system studied in [MS] and [DKS] (see discussion 
in the Introduction), our restriction is equivalent to the Ising restriction ae(0,�88 

The reason for the restriction 2 < 2 c - [diam(Tw)] -2 is clear: As we will show, 
if 2 < 2o then A L absorbs the excess sites in finite clusters by forming a single 
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droplet bounded by the curve x~LTw(p); the surface energy of this curve is 

x//~La(p)~(p). On the other hand, if 2 > 2 c, then the curve ~2LTw(p ) will leak out 
of the box; at this point, it is more efficient for the system to absorb the excess 
sites in a (single) droplet bounded by a curve which is not simply a scaled 7w, but 

which does fit entirely within A L. Thus, for any 2e(0, 1), we can define x//2~x(p) to 
be the minimum g-length of a curve within the unit square enclosing area 2. It is 
then possible to show that Theorem 6.1 holds with ~(p) replaced by ~(p) .  However, 
since the case 2 > 2c is not relevant to the Wulff construction, we do not include 
the more general result here. 

Proof of Theorem 6.1. We must produce upper and lower bounds on P[FL(2)]. 
We begin with the lower bounds. Our strategy here is (1) to show that with a 
lower bound of the desired type, there is a single large contour in AL containing 
roughly 21ALl sites; and (2) to show that outside this contour, the fraction of sites 
in the infinite cluster does not deviate significantly from Poo. 

Let us first estimate the probability of a contour containing approximately 
2[AL] sites. As in the proof of Theorem 1.A, we will enumerate all dual rings 
surrounding the origin: r~, e = 1,2 . . . . .  Now, however, rather than considering 
outermost occupied rings, we define: 

r~ = {~0[r~ is the innermost occupied dual ring surrounding the origin}. (6.4) 

By a variant of the argument used in the proof of Lemma 4.3, it is not difficult 
to show that for e~IR +, 36'(e)=> �89189 such that for N large, the probability of 
observing the event r~ with d(r , )  > [1 + 6'(e)]N is larger than exp [ - (1 + e)a(p)" 
ez~(p)x/N ]. Indeed, first using Lemma 4.3, one produces the event fe (cf. Eq. (4.39)) 
for r e outside some convex polygonal approximation, ~, to 7w of area exceeding 
(1 + 6(�89 As in the proof of Theorem 1.B, we may take d(re) < (const)N, for 
some sufficiently large constant, without significantly altering the probabilistic 
estimate. Then, for some n which is itself large, but only on the order of log N, one 
ensures that with probability tending to one (as e-~ no dual site which is inside 
the polygon ~ and a distance further than n from it belongs to a dual path of 
linear extent as large as n. This easily gives the event r__~_~ for some r, with 

~r > [(1 + 6)N - (const)xfN log N] at a cost no larger than (const) exp [ - (1 + �89 e)" 

a(p)x/N ]. The desired statement is now seen to hold for all N large enough. 
Applying the above result with N = 2L z, we see that if 2 < 2c, and L is large 

enough, then with probability exceeding 

exp [ - (1 + e)x/2a(p)~(p)L] (6.5) 

the event r, occurs for some r, with [Int(r~)C~ALI > (1 + 6')2]ALl. 
Next, we must show that in AL\Int(r,), the infinite cluster density does not 

exceed P~ by more than enough to compensate for the depletion of the infinite 
cluster density within r,. To this end, we observe that if r, is the innermost circuit 
surrounding the polygon (, here it is the region outside r, that is unconditioned. 
Thus we can apply the reasoning of previous theorems to show that, with 
probability tending rapidly to one, the infinite cluster in AL\Int(r~) will not be 
dense enough to prevent FL(2) from occurring. Explicitly, we pick n of the order 
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of log L, and note that, for any c, the event {f<=,(AL\Int(r,))-- P =<, > c} is positively 
correlated (in the sense of Harris-FKG) with the event that r~ is the innermost 
such circuit. Then, using Lemma 4.2, it can be shown that with probability tending 
to one at least as fast as exp [ -  (const)(6'2lArl/n2)], enough of the remaining sites 
belong to clusters smaller than n z to produce the event FL(2 ). This completes the 
proof of the lower bound. 

Now let us establish the upper bound on P[FL()~)]. We begin with the 
observation, mentioned earlier, that in any configuration ~o, any site which does 
not belong to the infinite cluster is, w.p. 1, surrounded by a finite contour of dual 
bonds. Let us denote by F(o9) the collection of outermost contours in o9 whose 
interiors have relatively large intersection with the box AL: 

F(og) = {~ 1(co) . . . . .  ?,to,)(og) IV j, 1 < j < n(og), lint (T j) n A L I > (D log L) 2, 
and 7i is the outermost dual contour 

surrounding some point in AL}. (6.6) 

In the above D is a large constant to be specified later. Let K*(L) be the function 
defined in Eq. (4.41), and define the event 

Q = Q(2; L) = {OgI [AL\ U Int(Tj)I < ( 1 -  2)I ALI[ I + 2~c*(LZ) ] (6.7) 

From the estimates of Lemma 4.2, it should be plausible that unless Q occurs, not 
enough volume has been isolated in large clustei's to permit FL(2 ) to occur with 
any reasonable probability. 

In order to explicitly prove the above statement, let us first pause to consider 
the following percolation-type problem. Let B c 7/, 2 be any collection of sites. We 
will focus on those configurations 12(B c) of bonds with both endpoints in B c. The 
sites xeB  c of any such configuration fall into three disjoint categories: 
(1) IC(x)l = ~ ;  
(2) IC(x)l < ~ and C(x)c~OB r (3; 
(3) IC(x)l < ~ and C(x)c~OB=~. 
We say that a site x in category (3) is in a "truly finite cluster," in the sense that 
C(x) is unchanged by altering the status of any bond emanating from B (i.e. any 
bond with one endpoint in B). Now take A c B ~, n an integer, and a < 1, and 
consider the event: 

{f~, (A)  > a} = {ogel2(Br the fraction of sites in A belonging to truly finite 

clusters of size no larger that n exceeds a}. (6.8) 

Although the problem of directly estimating Ppt a~B,)l [ f  ~,(A) > a] may seem formi- 
dable, it is obvious that this is bounded by the probability of {f__<,(A) > a} in the 
usual percolation problem: 

p | pt a~no)l [ f  <-n(A) ~ c~] <= Pp[f  <=,(A) > c~] (6.9) 

To see Eq. (6.9), one need only observe that a Bernoulli configuration on the full 
lattice can be constructed in a two-step process:first draw a Bernoulli configuration 
in 12(B~), and then independently draw a Bernoulli configuration on the remaining 
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lattice. Iftheevent { f ~ , ( A ) >  a} occurs in the first step of the process, then (by 
definition) the additional bonds cannot decrease the fraction of sites in dusters 
smaller than n. 

Let us now consider the event QC. Denote by F t any collection of dual contours 
such that the event F*  = { col F(~o) = Fj } implies the event QC. Letting IL(Fj) denote 
the set of sites inside the contours of Ft,  it is seen that we may describe the 
configurations outside L(Fj )  as a O(ll.(Fj)C)-percolation process subject to the 
two constraints: 
(e) There are no large contours in AL outside the contours of F t (where "large" 

is specified by the condition in Eq. (6.6)). 
(fi) All sites in ~II.(Fj) are connected to infinity (outside II.(Fj)). 
The second constraint follows from the fact that F(co) is a set of outermost contours. 
We denote the events in conditions (a) and (fl) by aj and fit, respectively. Thus if 
we define Nj to be the event that the contours of Fj are actually formed, we may 
write: 

F*  = ~ c~ c 9 c~ fij. (6.10) 

It is worth observing that the events ~j  and ~j c~ flj are independent, and that both 
c~j and fli are FKG positive events. 

Now observe that, given the event F* ,  the only possible mechanism for FL(2) 
to occur is that the fraction of sites belonging to small clusters (i.e. clusters whose 
intersection with AL is less than (DlogL) 2) far exceeds its typical value. Let us 
denote by Aj the sites of AL\]L(I"j) a distance further than (DlogL) 2 from ~A L. 
We claim that if c~eF*, the event FL(~ ) will not occur in c9 unless, in that 
part of r belonging to /2(lI~(Fy), the event {f<=(mlogL)2(Aj)> 1--P~ + Pax*} 
occurs. 

The above statement can be verified as follows: Each site in Aj either belongs 
to the infinite cluster or is in a cluster whose intersection with AL is smaller than 
(D log L) 2. Note that, by the definition of A t, any site in the second category is in 
a cluster whose total size is actually smaller than (DlogL) z. According to the 
condition FL(2), there cannot be more than (1 - 2)P~ [ALI sites in the first category. 
Thus we find 

f<(l)logL)z(Aj) >_ 1 -- (1 -- 2)Po~ IALI/]Ajt. (6.11) 

On the other hand, any site in AL\Aj is either a distance (DlogL) 2 from the 
boundary--which accounts for fewer than (4L)(D log L) 2 si tes--or is sealed in a 
large contour--which accounts for fewer than IAL[D.--2(1--A)x*(L2)] sites. 
Evidently, if o)~FL().) n F~,  

IZjl > [ALI[1 - EL - 2(1 - 2)tc*(L2)] - 4(DlogL)2/L] 
=(1 - 2)IAL[ [1 +2x*(L2)-4(DlogL)2/[(1 - 2)L]]. (6.12) 

For L sufficiently large, Eqs. (6.11) and (6.12) imply that the desired event occurs. 
Now recall categories (1), (2) and (3), defined earlier in the context of a general 

percolation problem on a "depleted" lattice. It should be observed that because 
the event F*  includes the event fit (which connects all sites in ~II.(Fj) to infinity), 
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there is no category (2) in this system--i.e, all finite clusters are truly finite. It is 
thus clear that the events 

F *  n { f  <= (OlogL)2(A1) >-- 1 --  Poo + Poo K*} (6.13a) 

and 

F *  c~ { f ~w,ogn,~(Ai) >-- 1 -- Poo + Poo~r 

{ f  <_ (DIogL)2(Aj) = 1 -- Poo + ==-. ~ j n ~ j n ~ j n  | > Po~x*} (6.13b) 

are equivalent. We note that the event _wj is independent from the other three 

events on the right-hand side of (6.13 b), and that { f ~DZo~L)2 (At) > 1 -- P~ + P = x* } 
is FKG negative, while, as previously mentioned, gin/~j is FKG positive. Thus, 
by the Harris-FKG inequality, we have 

Pp[FL(2) n r * ]  

< Pp[Si]Ppta~m(rjjo)l [c~in ]~i]Ppta~L(rj)o)l [ f~(DlogL)2(aj )  ~- 1 --  ec~ 4" PoohT*'] 

= Pp[F*]Ppta~L(rj)o)][f~(mogL)2(A~) >- 1 - P| + P~ox*]. (6.14) 

Summing over all j (and observing that the events F~ partition QC), we can use 
(6.9) and Lemma 4.2 to conclude that the probability of observing FL(2) in QC is 
negligibly small relative to the anticipated upper bound. 

We can therefore obtain an upper bound on Pp[FL(2)] simply by estimating 
the probability of the event Q. We start by recalling the upper bound on P[~(A0) ] 
of Lemma 4.1. It is easy to see that (if Ao is not terribly small) this upper bound is 
log convex and monotone, i.e. for x large enough, 

/ clogx~ 
u(x) = a(p)~(p), , /~[ 1 x~ ~ ] (6.15) 

is concave and monotone. Indeed, since u(x) is asymptotically just a square root, it 
is clear that for x large enough 

u(x) - xu'(x) > �88 (6.16) 

As we will see later, it is the concavity of the function u which forces individual 
clusters of moderate size to coalesce into a single large cluster. 

We again divide things up according to which large outer contours are present. 
Explicitly, we denote by F~ any collection of dual contours such that the event 
F~= {colF(co)= Fi} implies the event Q: 

P[Q] = ~ P [F;].  (6.17) 
J 

However, this time we need only estimate the probability of observing the rings 
alone: 

P[F~] < P[•j]. (6.18) 
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To estimate this, we consider the event: 

Bk(N) = {oglqk + 1 disjoint occupied dual rings ro . . . .  , r~, 

none of which are contained in one another, with 

Ilnt(rj)C~ALI >= (DlogL) 2 and ~ ]Int(rj)C~AL] = N } .  
J 

It is not terribly difficult to see that 

P[Bk(N)] = ~ P[Ej],  
0 -< k -< kmax(N) j 
N o ~ N ~  ] ALl 

where 

and 
kmax(N ) = [ N / ( D  log L) 2] -- 1, 

(6.19) 

(6.20) 

(6.21) 

(6.22) No = IALI I-2 -- 2(1 -- 2)x*(Z2)] ~ 21ALl(1 -- w*(2)) 

is the minimum enclosed area consistent with the event Q. 
Let us define a j -  ]Int(rj)c~ALI and recall the definition (6.15) of the function 

u. By the van den Berg-Kesten inequality and Lemma 4.1, we have 

P ( B k ( N ) ) <  ~ ] Z L l k + l e x p { - - ~ j u ( a j ) } ,  (6.23) 
{aj } : ~aj = N 
aj > (DlogL) 2 

where IALI k+l accounts for all possible placements of the rings. Now, by mono- 
tonicity and concavity of u, it is clear that the sum in the argument of the exponent 
in (6.23) is maximized by putting as much mass as possible in a single ring. Thus, 
using N k § ~ as an (over)estimate of the number of ways to partition N, we have 

P[Bk(N)] <_ N k+ l lALI k+ l exp { -- [u(N - k(D log L) 2) + ku((D logL)2)] }, (6.24) 

where we have tacitly assumed N > (k + 1)(DlogL) 2. We degrade the estimate 
further by saying N < IALI, and thus (NIALI)~+I < IALI2e 4kl~ Permitting k to 
assume continuous values in the allowed range, let us attempt to minimize (the 
negative of) the function in the exponent in (6.24). The derivative of this function 
with respect to k is 

-- (OlogL)2u ' (N  - k ( D l o g L )  2) + u ( (DlogL)  2) - 4 log L. (6.25) 

However, u' is decreasing (by convexity) and N -  k(DlogL) 2 >  (D log L) 2. Thus, 
using (6.16), this derivative is bounded below by 

u((D log L) 2) -- (D log L)2u'((D log L) 2 ) -- 4 log L > �88 log L) 2) -- 4 log L > 0, 

(6.26) 

provided that D has been chosen large enough. Thus the worst case occurs for 
k = 0, for which we have 

P[Bk(N)]  < (const)L 4 exp {-- u(N)}. (6.27) 

Since for each N, there are only of order L allowed values of k, we may freely sum 
(6.20) first over k, then over N > N o to obtain an upper bound of the stated 
form. �9 
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We can now establish the single droplet result: 

Proof of  Theorem 3. Take p > Pc and condition on the event FL(2). Then according 
to the statement of Theorem 3, we must find functions ~L(2), (L(2) and #L(2) tending 
monotonically to zero as LI" 0o, such that, with conditional probability tending 
rapidly to one with L, there is an occupied circuit of dual bonds, 7, in AL satisfying 

(~) ~(7)  > [1 - (~L(A)]2IALI, 

(~) p(Tw, ~-(~)) --< ~(2), 
(~) Int (7) contains a connected duster of size exceeding P~o (P) [ 1 - #L(2)] 2[ ALl. 

We first establish property (o~). To this end, we note that by Theorem 6.1, there 
exists a sequence ~L(2)= ~L(2;P) with ~L+0 as L]" oo satisfying 

exp ( -  [1 + ~L(2)] [ . ,f2o-~L]) < P[FL(2)] < exp ( -  [1 - qJL(2)] [ . , f 2 ~ L ] ) .  

(6.28) 

Let us now define another positive monotone sequence, ~bL(2) = q~L(2; p), with ~b,. +0 
as LT oe satisfying 

~bL(2 ) > 2max {~L('2), x*(2)}, (6.29) 

where x*(2) was defined in Eq. (6.22). We claim that any such function ~bL(2 ) 
satisfies (z~). 

To prove the above claim, we first note that, according to the arguments in 
the proof of Theorem 6.1, the condition FL(2 ) means that we may restrict attention 
to configurations in Bk(N ) for N O < N < IALI (el. Eqs. (6.19) and (6.22)). Let us 
estimate the probability that Bk(N) occurs, but that we do not have a ring enclosing 
sufficient area to imply the result (z~), i.e. consider the event: 

(~)~V,k = {o)~Bk(N)lall occupied dual rings r satisfy 

lint (r) n ALl < (1 -- 4)L)21ALI}. (6.30) 

As in the bound on P(Bk(N)) in Theorem 6.1, P[(~)~V,k] can be estimated using 
the van den Berg-Kesten inequality, Lemma 4.1 and concavity of the function u. 
Now, however, since the event (e)~,k imposes a maximum ring size, concavity 
implies that the optimal configurations will have the maximum number 
m = m(N)~2g + of large rings--as large as the constraint permits--to absorb most 
of the area N. There will then be a single ring of intermediate scale, containing 
as much additional area as possible. The remaining k - m rings will have interiors 
as small as permitted. This translates into the estimate 

PI-(~)~,k] < Nk+ IIALIk+ lexp {-- I-mu((1 -- C~L)2IAL[ ) + ( k -  m)u((D logZ) 2) 

+ u(N -- m(1 -- OD2I Az I - (k - m)(D log L)2)] }. (6.31) 

Summing over k then N, it is found that any excess of N or k over the minimum 
allowed values is unnecessarily costly; essentially the entire sum is contained in 
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the terms N = N o (and thus m = 1) and k = 1 (cf. Eqs. (6.24)-(6.27)): 

p[(~)c] < ~ p[(~z)~,k] 
N o < N < I A L  I 

re(N) < k < kmax (N) 

< (const.)lALI4exp {-- [u((1 - (PI,)21ALI) + u((~bL-- ~*)21AL[)]}. (6.32) 

Examining the definitions (6.15), (6.22) and (6.29) of u(x)0 x* and ~bL, it is seen that 
PI-(~) ~] is very small relative to P[FL(2)]. This establishes the first claim. 

Results (~) and (c) can now be taken over from previous derivations. Given 
the existence of the circuit 7, as ~r ~ ,  the estimates of Theorem 5.3 which 
demonstrate that "case (ii)" is highly unlikely relative to "case (iii)" can be applied 
directly. Indeed, we need only construct our "rf' (here denoted by (/~(2)) and ~bL(2), 
and then use an identical argument. Now, given the existence of this ring, there 
must be an ample unconditioned region of a fairly regular shape (i.e. convex), 
providing us with an analogue of Lemma 4,3. Translating mutatis mutandis the 
proof of Theorem 1.B, one can show that, within this region, there is a large cluster 
of the stated specifications. �9 

A p p e n d i x  

Here we provide proofs of a few "obvious" geometrical facts which were used in 
our proof of stability of the Wulff minimum (Theorem 5.2). 

A.I. Uncrossing of Polygons 

P r o p o s i t i o n  A.1. Let vl . . . . .  Vk~P,~ z denote the vertices (extreme points) of a convex 
polygon. We assume that the vertices are labeled in (cyclic) order, i.e. the curve 7tvj) 
composed of the segments joining successive vertices is self-avoiding. Let (v)) denote 
any reordering of the vertices, and 7(~) the curve passing through the {v j} in the new 
order. Then 

g(7~vj)) --< g(7(~3) ), (A.1) 

where g is the norm constructed in Proposition 3.2. 

Proof. If the curve VI~3) is composed only of line segments joining neighbors in the 
original ordering (i.e. if7~,3) is a reparameterization of 7c~j)), then there is nothing to 
prove. Otherwise, the curve 7(v3) contains crossing lines: Indeed, suppose that vj is 
connected to vi+~ with 1 < s < k - 1. Since each vertex belongs to two line segments, 
there must be an r < s and an r ' >  s such that v~+r is connected to vj+r,. By 
convexity, the two segments will cross in the interior of the polygon. (See Fig. 2.) 

Let X denote the number of crosses in the curve ~(~). We claim that there is yet 
t! another ordering, (v j), with no more than X - 1 crosses such that 

g(Y(v;,) ) < g(7~o)) ). (n.2) 

Indeed, suppose that vj is connected to vj+ s, while vj+, is connected to v)+r, with 
1 < r < s < r' < k - 1, as illustrated in Fig. 2. Clearly, we may "uncross" the diagram 
in one of two ways: either attach vj to vj+, and vj+~ to V)+r,, or attach vj to vj+~, 
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~+/-' 

vj 
Fig. 2. Crossing segments 

and v~+~ to vj+r. Having done so, either way, the result is a collection of line 
segments which, by the triangle inequality, have total 9-length no longer than 9(~tv~j )- 
However, this does not quite establish the conclusion in Eq. (A.2). Indeed, we must 
demonstrate that: 
(i) the resulting line segments may be assembled into a single closed curve; and 

(ii) the uncrossing procedure strictly decreases the number of crosses. 
Concerning the first issue, it is seen that before and after the uncrossing, each 

vertex is connected to two lines; thus we can still construct closed curves from the 
resulting segments. However, this does not preclude the possibility that, by the 
uncrossing, we have broken the original curve into two disconnected pieces, i.e. 
two sets of vertices with no interconnecting segments. To see that this problem 
may be circumvented, let us exhibit the only possible mechanism for disconnecting 
the original curve. Suppose that {vi} can be divided into two sets, A and B, with 
A n B =  ~ and (say) vj, vj+,EA, while vj+s, vj+~,~B. Now if only the segments 
between vj and v~+~ and between Vj+r and vj+,, connect the sets A and B in the 
original curve 7<v~l, then the curve will split if we use the first choice of how to 
uncross. However, before we contemplate such a move, it is worth observing that 
since V<v~ is a closed curve, it must be the case that vj+s and vj+r, are the endpoints 
of a curve threading through all the other vertices of B. A similar statement holds 
for the vertices v~ and vj§ Thus the alternative choice for uncr ,  ssing necessarily 
implies that the resulting curve will have two lines connecting A to B. 

The second issue is dispensed with by means of an elementary convexity 
argument. Suppose that we choose to uncross via the first option, so that vj ends 
up connected to vj+r. Obviously, this procedure removes the dark cross shown in 
Figure A.1. Let us show that it does not introduce any new crosses, except if it 
also removes at least a compensating number of crosses from the original curve. 
Consider the two "half line segments" starting at vj and v j§ (before we uncross), 
as well as the final segment connecting vj to vj+ r Denote by C the set of vertices 
Vj+l, . . . ,vj+r_l,  and by D the set vj+~+l,...,vj_ 1. It is clear, from the convex 
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arrangement of the vertices, that any line joining two points in the C group crosses 
none of the three line segments under question. On the other hand, it is conceivable 
that a segment joining a pair of vertices in the D group touches one or both of 
the half segments; it certainly does not touch the line joining vj and vj+,. In this 
case, the number of crosses can only decrease. Finally, if a C vertex is connected 
to a D vertex, there is an inevitable single intersection with one of the two half 
segments before uncrossing, as well as an inevitable single intersection with the 
segment connecting v~ to v j+ r after uncrossing. Thus there is no net change in the 
number of crosses in this group. 

Having verified the statement (A.2), it seen that if the uncrossing procedure is 
repeated (no more than) X times, the desired inequality is established. �9 

A.2. A g-based HausdorffMeasure. There is a classic result which states that if y 
is a rectifiable plane curve of (Euclidean) length s a n d / t ( - )  is the standard 
one-dimensional Hausdorff measure, then 

/~(y) < ~(y). (A.3) 

Furthermore, the inequality in (A.3) is an equality if y is a self-avoiding curve. By 
analogy, i f / tg( - )  is the one-dimensional Hausdorff measure constructed from the 
metric g, one would expect 

/t0(Y) < g(Y) (A.4) 

with equality if y is self-avoiding. The derivation of this result involves only minor 
modifications of the standard derivation of (A.3). The result is also a consequence 
of Theorem 2.10.13 of [F]. Nevertheless, for the sake of completeness, we will 
present it as a formal proposition. 

Definition A. Let g(x) be defined as in Proposition 3.2 and Us(x ) = { y ~ l ( 2 j g ( x -  
y) < e}. For A ~ ~2, 'we define 

j = l  j = l  

where the infimum extends over all countable coverings of A by g-balls of radius 
less then e. The/to,~(A) are clearly monotone in e, so that 

~to(A) = lim/to,~(A) (A.5b) 
e--*0 

exists. The funct ion/ to(-)  is called the one-dimensional g-Hausdorff measure. 

Lemma A.2. Let y: [0, T] ~ F-~ 2 be a rectifiable curve. Then 

(where, as usual, we also use y 
self-avoiding, 

~to(Y) = g(Y). 

Proof. We first show that, in general, 

g(Y) >/to(Y). 

~.(~) =< g(~) 

to denote the range of y). Furthermore, if 7 is 

(A.6) 
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To this end, take 7 and denote by (xl . . . . .  x,{~}) the sequence of points along 7, 
with xl -- 7(0) and x.t,) = 7(T), such that the g-length of the portion of 7 between 
xi and xi+ x is equal to 2e, except for the final pair, x . -1  and x,, which will in 
general be separated by a g-length along 7 of less than 2e. Then it is clear that 7 
is covered by the union of balls of g-radius = e centered at the points (x~). Up to 
an additive factor of 3e, the sum of the diameters of the balls in this cover provides 
an upper bound on #g,~(7). We have 

g(?) + 3e __> #g,~(~), (A.7) 

which establishes (A.6). 
It remains to be shown that if g is self-avoiding, then g(?) = #g(7). To this end, 

we first establish the intermediate step 

#g(~) > g(7(0) - ~(T)) (A.8) 

which holds regardless of any stipulations concerning self-avoidance. It is trivial 
to show that (A.8) holds if 7 is a straight line; indeed, in this case, for each 
~, #g.~(7)= g(?(0)-  ?(T)) ( -g (7 )  for a non-retracing straight line). In general, let 7 
denote any rectifiable curve assumed, with no loss of generality, to have 7(0) = 0, 
and let U~j(xj), j = 1, 2 . . . . .  N be a collection of g-balls with ~j < ~ and 

N 

7 ~ ~ U,~(xs), (A.9) 
j=X 

For each x~P~ 2, consider the level curves 

C~, = { y ~ R 2 l g ( y )  = g(x)) ,  (A.10) 

and denote by sj the intersection of C~j with the line joining 0 ( -7(0) )  and 7(T). 
(See Fig. 3.) Finally, denote by L the straight line segment which runs between 0 

/ 
/ 

f / 
\ 

\ 

J 
/ 

i ! 

f 

Fig. 3. A 0-covering of the curve y 
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and 7(T). We claim that 
N 

L c  U u~j(sj), (A.11) 
j = l  

from which (A.8) follows immediately. Indeed, for any yeL,  3y*eCy such that 
y*e U~j(xj) for some element j of the covering--in particular, any element of Cy c~ ? 
is such a point y*. But then 

ej >_>_ g(y* - xj) 

> - I g ( y * )  - g ( x j ) l  

: Lg(y)  - g ( s j ) t  

= g(y - s j). (A.12) 

Here the third line follows from the fact that these points lie along level g-curves, 
and the fourth line is a consequence of the fact that y and sj are connected by the 
straight line L. This establishes (A.t t). 

Given (A.8) and (A.6), the equality g(7) = #0(~) for self-avoiding curves follows 
easily by considering the Hausdorffmeasure of polygonal approximations to 7. �9 

Corollary. Let ?eX\J denote a "convex" curve (as defined in the proof of 
Theorem 5.2) and let ~n be the boundary of the convex hull of ~: ~n = OH(y). I f  y H ~ 
in the sense that 3x~? such that m i n g ( x - y )  = a > 0, then 

ye?H 

g(?) --> g(~n) + 2a. 

Proof. This corollary basically follows from the fact that 7~ is self-avoiding and 
that the Hausdorff measure is an outer measure. Explicitly, let us assume that 
?(0)eTn and denote by tx the first time when 7(tx)= x. We define 

t~- = inf{s[s < tx,?(s, tx)c~?n = ~ }  (A.13a) 
and 

t + = sup{sis > tx,7(s, tx)C~TH = ~} .  (A.13b) 
Then 

t + g(7) = g(y(0, t~-)) + g(?(t;, tx)) + g(y(t=, t+)) + g(?( :r T)) 

> g(?(O, tE)) + 2a + g(?(t +, r ) )  

> 2a + #g(?(0, t~-)u 7(t f ,  r ) )  

> 2a + #9(?u) 

= 2a + 9(7I~). [] (A.14) 
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