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Ornstein-Zernike Behavior for Self-Avoiding Walks
at All Noncritical Temperatures
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Abstract. We prove that the self-avoiding walk has Ornstein-Zernike decay and
some related properties for all noncritical temperatures at which the model is
defined.

1. Introduction

The original derivation of the long-distance behavior of a two-point correlation
dates back to the classic work of Ornstein and Zernike [1] in 1914. Although
Ornstein and Zernike examined only the classical fluid, it has since been realized that
their conclusions should apply also to the two-point functions of many lattice spin
systems and Euclidean quantum field theories. Moreover, by means of the Kallen-
Lehman representation, it has been demonstrated that there is a relatively
straightforward relationship between the decay of the two-point function and the
particle spectrum of the associated field theory (see, e.g. [13]). Motivated by this
connection, there has been much interest in rigorously establishing Ornstein-
Zernike decay for a variety of spin systems and lattice field theories [2-23].
Unfortunately, the vast majority of this work has established this decay only in a
perturbative regime (e.g., high or low temperature or strong coupling).

In this paper, we consider self-avoiding walks, and prove Ornstein-Zernike
decay and some related properties for all noncritical temperatures. Our method
relies on the approach initiated in [24] and [2] (see also [9-11,22,23]), which shows
that the original ideas of Ornstein and Zernike may be implemented whenever one
can define a direct correlation function with a strictly larger decay rate than that of
the two-point function. Here we prove such an assertion by constructing both a
direct correlation function and a set of rescaled variables which bound this function.
We then show that the rescaled variables obey a (renormalized) Ornstein-Zernike
inequality which provides a bound on their decay rate and hence on that of the direct
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correlation function. With certain modifications, we expect that such techniques can
be applied to other models of random aggregates, and possibly also (using, e.g., the
random graph expansions of φ4 theory [25,26]) to quantum theories with matter
fields.

Our renormalization approach is to be contrasted with the work of [1 1] in which
the decay of the two-point function was established nonperturbatively for a
particular class of random surfaces by the introduction of vertex terms for the
Ornstein-Zernike equation. It is likely that a nonperturbative proof of Ornstein-
Zernike decay for general surface models will require both renormalization
arguments along the lines of those presented here and the incorporation of vertex
terms as in [11].

2. Definitions, Statement of Results and Strategy of the Proof

In this paper, we will study and characterize the noncritical behavior of various
generating functions for self-avoiding walks of Zd. Let W denote the set of all self-
avoiding walks (S.A.W.'s) of J.d. The generating function for some subset S c= H/" is
defined by

weS

where βe[0, oo] is a parameter, and |w| denotes the length (i.e., number of steps) of
the walk weS. Of principal concern is the generating function for walks between two
specified points x, yεZd. This is called the two-point function and is denoted by

Gxy(β)= Σ *-*"• (2.2)
wx-*y

Here the sum is over all walks from x to y in if, and by convention, Gxx(β) — 1. When
one endpoint is the origin of coordinates, we use the special notation Gx(β) = GOX(β).

It is also of interest to consider the generating function for walks from the origin
to some (d — l)-dimensional hyperplane. Without loss of generality, we henceforth
choose the hyperplane to be perpendicular to the x^axis: PL={xeZd\xl=L}, so
that xe!PL may be written in the form x = (L;a) with a = (x29. .,Xd) The
corresponding point-to-plane generating function is given by

GL(/O= ΣG*(/0 = Σ <W/0
*ePL αeZ^1

Finally, the susceptibility is defined by

ΣGx(β)=ΣGL(β\ (2.4)
xe/d LeZ

which is just the generating function for all walks which start at the origin.
In the above definitions, we have tacitly assumed that β is large enough to

guarantee that the above generating functions are finite. It turns out that there is a
(dimension-dependent) constant, βc, such that for β > βc, the quantities (2.2)-(2.4) are
finite, while if β < βC9 these quantities diverge. (Divergence of χ at βc follows from the
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results of [27]; that the correlations are infinite below the same point is proved in
[23].) Our analysis pertains to the region β > βc.

Our results concern the long-distance behavior of the generating functions GL

and G(L.a). First we prove that V/? > βc, GL(β) has "pure exponential decay" in the
sense that there exist constants m(β) > 0, A (β) > 0 and C(β) > 1 such that

\GL(β)e + m(β)L - C(β)\ ^ e~Δ(β}L. (2.5)

The decay rate m(β) may be identified as the mass, and Δ(β) as the upper gap of the
spectrum.

Next we prove that for β > βc, there exist constants α(β) > 0 and ε(β) > 0 such
that for all aεZd~1 satisfying a\ < ε(/?)L, G(L.a)(β) admits an asymptotic expansion in
powers of L~1/2, the leading term of which is given by

G(L,a](β) = C(β) [α(j8)πL]-(d-1)/2e-m(^-fl2W)L[l + 0(ZΓ1/2)]. (2.6)

Observe that the ratio G(La)/GL represents the hitting distribution of endpoints in the
plane PL. Thus (2.5) and (2.6) imply that the hitting converges to a normal
distribution under the scaling β-+0[αL]~1/2. Ornstein-Zernike decay is given by
the factor of L~(ί/~1)/2 in (2.6), which is simply the normalization of the Gaussian
distribution.

Finally, we show that for all β>βc, the mass m(β) is real analytic.
The outline of the paper is as follows. In Sect. 3, we set up the Ornstein-Zernike

analysis for self-avoiding walks, as introduced in [23]. In order to do this, we define
two auxiliary generating functions: the cylinder function and the direct correlation
function. The former is essentially a subadditive version of the two-point function,
and can be shown to have the same exponential decay rate [23]. This allows us to
establish basic properties of the walks. The direct correlation function is a restricted
version of the cylinder function, obtained by summing over a subclass of walks
obeying a local constraint, and is related to the cylinder function via an Ornstein-
Zernike equation. Following the scheme of [23] (which is modeled on that of [ 10]),
the Ornstein-Zernike analysis reduces the proof of the long-distance behavior to the
conjecture that the direct correlation function has a strictly larger mass than that of
the full cylinder function.

Sections 4 and 5 are the core of the paper. There we consider blocks of some fixed
scale and define a generating function on these blocks which interpolates between
the direct correlation function and the full cylinder function at that scale. This is
done by restricting to walks which obey the local constraint of the direct correlation
function over only part of the block. The idea is then to construct interpolating
functions on any scale by patching together a sufficient number of block functions.
Unfortunately, simple patching will not suffice due to the recurrence properties of
the walks. We can, however, construct yet another generating function containing
only the recurrent walks, and show that the rescaled interpolating function and the
recurrent walk function are related by an Ornstein-Zernike inequality. Using
straightforward estimates on the individual block functions and the recurrent walk
function (in addition to certain observations on the properties of solutions to an
Ornstein-Zernike equation), we obtain a bound on the mass of the rescaled
interpolating function.
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In Sect. 6, we use this bound to show that the direct correlation function has a
strictly larger mass than the cylinder function, and hence that the latter has
Ornstein-Zernike decay. Finally, we prove that similar results hold for the original
two-point function. This is done via another convolution analysis which relates the
pole structure of the transform of the two-point function to that of the cylinder
function.

3. Basic Properties and the Ornstein-Zernike Criterion

In this section, we review some preliminary results from [23] which reduce the proof
of Ornstein-Zernike behavior to showing that a certain nonperturbative criterion is
satisfied. The first step is to find a subadditive function which has asymptotic
properties similar to that of the two-point function. This is accomplished via

3.1. The Cylinder Generating Function. Among all walks which contribute to G(La]

are a special class called cylinder walks, denoted by {WH: 0 -» (L; a)}, which satisfy the
restriction that every step of a WH, save the first, has both endpoints in the region
1 ̂  X j g L. (In other words, the cylinder walks obey Dirichlet boundary conditions.)
By this definition, the first step of a cylinder walk vvH: 0->(L;α) is along the bond
between the origin and the point (l O). The cylinder generating functions are then
defined by

*WΛ= Σ «-""""' (3-1)
wH:Q->(L;a)

and

HL(/O= Σ H(^(β). (3.2)
αeZd 1

The utility of the cylinder functions is that they obey a subadditive bound of the
form

H L l + L 2 ^H L l H L 2 . (3.3)

Using this, it is straightforward to establish the existence of a mass m(β) with certain
properties, as summarized below.

Proposition 3.1 ([23], Sect. 5.1). Vj8, the limit

m(/9=lim[-L-MogHΛ/ϊ)] (3.4)
L-+00

exists (in (R*). Furthermore, m: (0, oo)->{ — oou[0, oo)} is non-decreasing, concave
and right continuous. Finally, uniformly in L, m(β) provides the a priori bound

HL(β)^e~m(β)L. (3.5)

The full two-point function has asymptotic decay similar to that of the cylinder
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function. Indeed, it is easy to show that the GL obey the superadditive bound

G L l + L 2 ^G L l G L 2 (3.6)

which is just the Simon inequality [28] for all self-avoiding walks to a (d — 1)-
dimensional hyperplane. From this, it follows that lim [ — L"1 logGL(/?)] exists,

L-»oo

and that the GL satisfy an a priori bound of the opposite form of (3.5). Finally, it is
easy to show that if β > βc, the mass of the GL coincides with that of the HL. This
follows from combining the a priori inequalities on HL and GL with the obvious
bound

(3.7)

We have:

Proposition 3.2. Vj5>&,

Hml-L-1\ogGL(βK = m(β), (3.8)
L->oo

where m(β) is defined by (3.4). Furthermore, uniformly in L,

e-m(β)L ^ G^ ^ χ2^e-m(β)L (39)

Remark. The reader is cautioned that the elementary arguments presented above do
not determine whether the self-avoiding walk has a divergent correlation length. In
this regard, it is easy to establish that χ(β) diverges as β[βc, reminiscent of a second
order transition. (This can be done either with differential inequalities [29, 30], or by
observing that the coefficients N(n) in the expression χ(β) = ΣN(n)e~βn satisfy

n

N(n) ^ eβc".) However, in order to complete the analogy to a second order
transition, one must also demonstrate the divergence of m~i(β) as βlβc. The
additional ingredient for self-avoiding walks is the existence ([23],Th. 5.6) of a
function P(m) with the property P(m) < oo<^m > 0, such that

(3.10)

From this, one can establish w(β)|0 as βlβc, either by use of a Lieb-Simon
inequality [28,31], or directly from the observation that

χ=ΣGL£2P(m)/(l -e-m). (3.11)
Lei

The critical properties of the self-avoiding walk will play no role in our analysis.
Having determined the dominant exponential decay in Propositions 3.1 and 3.2,

we are now in a position to examine the detailed asymptotic properties of the two-
point function. To do this, we introduce

3.2. The Ornstein-Zernike Direct Correlation Function. Consider a cylinder walk
wH:0->(L;α). Let n/wH), l^ j^L, denote the number of times that the dual
hyperplane xί =j — $ is pierced by the walk WH. Note that since WH is a cylinder
walk, n/wH) is odd for every), and by our boundary condition, «I(WH) = 1. We expect
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that generic walks will have many of the n/s equal to 1; indeed, this is easy to verify
for large β. The special walks for which this is forbidden, i.e. {wH:Q->(L;a)\nj{wH)>
1, V I <7^L}, are central to our analysis. The generating function defined by
these walks is called the direct correlation function:

CtL Jβ) = Σ e-^ (3-12)

CL(«= Σ C(L,a](β\ (3.13)
αeZ"-1

The utility of the C functions is that they are related to the H's via an Ornstein-
Zernike equation:

H L = Σ CNHL.N9 L ^ l . (3.14a)
N = 0

Here we have used the special conventions H0 = 1 and C0 = 0. More generally

"<*«) = Σ Σ Wf(L-N;β-*)> L^ί. (3.14b)
beI*-iN = 0

It is precisely because of these equations that we can identify C as the direct
correlation function.

Although the C functions are not subadditive, we may define their mass by

mc(β) = lim inf [ - L~ l log CL(£)]. (3. 1 5)
L->oo

Evidently mc(β) ^ m(β\ Indeed, it is easy to verify that lim [mc(β)/m(β)'] = 3. (This
β-+ao

follows from the fact that, for cylinder walks, rc/wH) > 1 =>n/wtf ) = 3, and that both C
and H concentrate near their minimum allowed walks as β -> oo .)

The following theorem was derived in [10] in the context of a particular random
surface model. An explicit proof for the S.A.W. (including a derivation of (3.14)) can
be found in [23].

Theorem 3.3 ([23], Ths. 5.10 and 5.11). Suppose β > βc. Whenever mc(β) > m(β):
(1) there exist finite, positive constants CH(β) and ΔH(β) such that

I WL(β)e + m(β)L - CH(β)\ ^ e-Δ"{β)L

(2) there exist finite, positive constants a(β) and εH(β) such that for all αeZ^"1

satisfying \a\<εH(β)L,

HtoaW = CH(β}l*(β)πL] -<rf- we-«nLe-*ι«nL[l + O(L~ 1/2)];

(3) m(β) is real analytic.
It follows from the discussion above that the condition mc(β) > m(β) is easily

verified for large β; thus one can derive conclusions (l)-(3) in a perturbative regime.
However, for our purposes, the significance of Theorem 3.3 is that it reduces the
proof of Ornstein-Zernike behavior to the conjecture that mc(β)>m(β) Vβ> βc. The
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proof of this conjecture is the content of the next two and one-half sections.
Eventually (in Sect. 6), we return to a consideration of noncylinder S.A.W.'s, and
show that conclusions (l)-(3) hold for the full two-point function.

4. Construction of the Interpolating Functions

4.1. Control of the Large L Behavior of CL. The key ingredient in the proof of
Theorem 3.3(1) is to show that whenever mc(β)>m(β\ the Laplace transform
(HΓ(z) = ΣLHLzL has a simple pole at z = em(β). Here, we wish to derive a weak
converse to such a statement. Namely, given certain estimates on the function IHΓ(z),
can these be used to get some control on the decay of the CL?

Our estimates on H~(z) are provided by an analogue of (3.9):

χ~2(β)e~m(β)L^ HL(β)^e-
m(β)L, (4.1)

which is a consequence of (3.7) and the a priori bounds on GL and HL. It does not
follow from (4.1) alone that CL has a strictly larger decay rate than HL. Nevertheless,
as shown below, (4.1) provides us with a moment condition on the quantities CLemL.

Proposition 4.1. Suppose β>βc. Then

(i) £CL*W(')L = 1,
L

and

(ii) ΣLCLem(β}L<ao.
L

Proof. Using the conventions H0 = 1, C0 = 0 and C t = H l 5 we define the Laplace
transforms

H~(z)= X MLzL (4.2)
L = 0

and

C~(Z)EE f CLzL (4.3)
L = 0

By the Ornstein-Zernike equation (3.14a), these quantities are related via

H-(z) = [l-C-(z)]-1, (4.4)

which is well-defined whenever \zem\ < 1.
Let us study C~(z) as a function of the real variable xe(0,em). Since all the

coefficients CL in (4.3) are real and positive, we may express the left sides of (i) and (ii)
as the x]em limits of C~(x) and x(d/dx)C~(x\ respectively. The latter quantities may
be calculated via (4.4) and the bound

xe-mγ^U~(x)^[\-xe-mY\ (4.5)

which follows from summing (4.1) over L. In particular, (4.4) and (4.5) imply
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t)L = C~(em) = 1, which proves (i). To establish (ii), observe that

x—C~(x) = x[H~(x)]-2 — H~(x) g xe-m(βY(β), (4.6)
ax ax

so that £ LCLem(β)L ^ χ4(β) < oo for β > βc.
L

4.2 The Block Variables. As indicated in the previous subsection, analytical
methods alone do not give the necessary control on the decay rate of CL. The first
step in circumventing this difficulty is to define block variables which interpolate
between HL and CL. To this end, take A and R to be positive integers and let L =
2A + R. We divide the (cylinder) region 0 ̂  X j ^ L into three strips specified by their
X j coordinates: Sl = {x1eZ\0^xί^A}9 Sc = {xίeZ\A<xί <A + R}, and Sr =
{x1eZ\A + R ̂ x1 ^2A + R}. Our block walks are required to obey the "C
condition" (i.e., n;{w) > 1) in the central strip:

93*(L,#)= (J {wH:0^(L;α)|V7 eSc n/wH)>l}. (4.7)
aeZ*-1

The corresponding generating function is given by

) = X e-'M (4.8)

It is also convenient to define modified block walks which need not obey the
cylinder restriction on the left boundary. To be explicit, let {w7:0 -> (L; a)} denote the
set of self-avoiding walks from the origin to (L; a\ with every step in the region
xl ^L. (Thus, the "J walks" obey Dirichlet conditions only on the right boundary.)
One could define a corresponding generating function JL(/?); however, for our
purposes, it suffices to note that JL(β) ̂  Gi,(β) The modified block walks are those J
walks which obey the C condition in the central region:

n/w j)>l}, (4.9)
aeZd~l

so that

B1(L9R;β)= Σ e-w (4.10)
we»j(L,Λ)

Obviously, B^L.R) and Bf(L,Λ) provide upper bounds on CL. The content of
the following lemma is that, for R large enough, the block functions are small relative
toH L .

Lemma 4.2. Suppose β> βc and L > 3R. Then, uniformly in L, there exists a δ(R) with

lim δ(R) = 0 such that
R->ao

B*(L, R) ̂  B^L, R) ^ δ(R)e~mL.
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Proof. First let us derive a bound of the desired form for the function BJ. To this
end, we write an exact expression for B* and use the a priori bound on H:

A A oo oo

Next, we observe that for any nonnegative function F:

00 00 00

Σ Σ F(N + κ)= Σ np(n\ (4 12)

so that (4.11) implies

00 00

N= 1 n = 0

Now notice that the coefficient of e~mL in (4.13) is bounded above by Σ nCne
 + mn.

Since this is the tail of a convergent sum (cf. Prop. 4.1 (ii)), it tends to zero as Λ j oo.
In order to derive a similar bound for B^L, #;/?), we must account for those

walks which journey into the region xί <0. Most of these can be handled by
replacing H Λ _ N by GA-N in the bound (4.11), which modifies the final bound by a
multiplicative factor of no more than χ2(β). This, however, does not take into
account the (relatively rare) walks which visit the region xί < 0 after having visited
Sc. The contribution of such walks can be bounded above by the additional term

GAGL g e-mL^6e-2mA (4.14)

Since by assumption A > R, the coefficient of e~mL tends to zero as R | oo. This gives
the desired result with

(5(K)^χ2[Σ nCne
 + nm + A~2m*] (4.15)

4.3. The Reseated Variables. In order to generalize the previous construction to
arbitrary scales, we choose N ̂  1 and consider walks wH: 0->(NL;α) which satisfy
the "C condition" in each of the central strips, with x± coordinates

l<A + (j-\)L + R}, (4.16)

^7 :g N. We denote this class of walks by

n j(wH)>l}, (4.17)

and the corresponding generating function by

It is easy to see that these rescaled interpolating functions obey the subadditive
bound
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so that the limit mB(L,R:β) = lim [-ΛT * log B$(L,#;β)] exists and provides the
N-*ao

usual a priori inequality

H*^e-mάL^N. (4.20)

Again, it is convenient to define modified interpolating functions by summing
over walks which may enter the region x: < 0. Thus we denote by 93#(L, R) the set of
walks defined as in (4.17), with WH replaced by Wj. The corresponding generating
function will be denoted by BN(L, R).

Notice that the rescaled functions defined here provide a bound on the direct
correlation function:

)^CNL. (4.21)

5. An Ornstein Zernike Inequality for the Rescaled Variables

Consider the walks contributing to the rescaled interpolating function BjjJ. Since
these include all walks which can be obtained by patching together block walks in
93?, we have the obvious bound

B$L,K)^[B*(L,K)r. (5.1)

Indeed, for any finite L and R, the inequality (5.1) is strict.
Part of the difference between the two sides of (5.1) is due to walks which have

small fluctuations at the edges between successive blocks. These can be taken into
account by simply relaxing the restriction that a block walk not enter the previous
block, i.e. by replacing Bf(L5JR) with E^L.R). Thus one might hope to obtain an
inequality of the form B$(L,K) ̂  [B^LjK)]^ to complement (5.1). Were such an
inequality legitimate, we would be done. Indeed, by Lemma 4.2, such an inequality
would imply mβ(L, R; β) > m(β)L for suitably chosen R and L. This, combined with
(4.21), would in turn imply1 mc(β) > m(β\ the desired result.

However, it is clear that the inequality B&L, R) £ [β ^L, R)]N is not quite
correct. Consider, for example, walks which have satisfied the C condition in Sc(2)
before satisfying it in Sc(l). While such walks can be found in 93£, it is not possible to
construct all of them by patching together two walks in 93^

As the above example illustrates, the "missing walks" are those which travel back
to the first block after having wandered a substantial distance from the origin. They
are thus related to the recurrent walks which are expected to produce deviations
from (short-distance) Ornstein-Zernike behavior at the critical point in low
dimension. Clearly, these are the walks we must control. We do this by defining a
generating function for these walks and showing that it plays the role of an
approximate direct correlation function for the generating function EN.

5.1. The Recurrent Walk Generating Function. Let we®N(L, N), N > 1, and denote
by wf the walk obtained by amputating w at its first point of intersection with the

1 Even this implication requires some further argument since mc is only defined as an inferior limit. It is,
however, straightforward (cf. Theorem 6.1) to obtain the result mc > m from mB/L > m
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plane x1=(N—l)L. As explained above, it need not be the case that n/w1) exceeds 1
for all7'eSc(l), since the full walk w may correct this deficiency after having visited the
final block. Indeed, these are precisely the recurrent walks we wish to control. We
thus define

r^L, R) = {we93N(L, R)|3jeSc(l) s.t. n/w1) = 1}, (5.2)

and the generating function

V"N(L,R β)= X e-ίM. (5.3)

For technical reasons, it is useful to define a slightly modified version of the set
1^χ(L, R) which includes also walks that need not satisfy the C condition in the final
block:

r»(L,R}= (J {w J :0^(NL;f l ) |V l^ igJV-lVjeS c (Oπ/w J )>l
αeZ"-1

and
3fcGS c ( l)s . t .n k (w*)=l}. (5.4)

Our recurrent walk generating function is given by

VN(L,R;β)= £ e-OM (5.5)
we~rN(L,R)

Notice that i^N(L, R) includes all walks which are in (̂L, R), so that

V*N(L,R)^VN(L,R). (5.6)

The following lemma shows that, for β>βc, the recurrent walk generating
function decays much more quickly than MNL.

Lemma 5.1. Suppose β> βc and N > 1. Then, uniformly in N and L, there exists an
Ω(R) < oo such that

Proof. Any walk in i^N(L9 R) must travel to the plane x1 = (N — 1)L, return to the
plane xί=L — A, and then travel to the plane x^=NL. Having done so, it
automatically satisfies the C condition in all but the two boundary blocks. Relaxing
the constraint that the walk satisfy the C condition in Sc(l) after having returned to
the first block, and allowing the various pieces mentioned above to intersect, we
have the obvious bound

χ6^^-3^-1^, (5.7)

which is the desired result with Ω(R) ^ χ6e + mR.

5.2. The Ornstein-Zernike Inequality. Although the recurrent walk function does
not allow us to write an exact convolution expression for the EN, it does enable us to
derive an Ornstein-Zernike inequality. In the following proposition, we demons-
trate the utility of such an inequality.

Proposition 5.2. Let {/„} and {gn} be real nonnegative sequences with /0 = 1, g0 = 0
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andf1 = gί9 and suppose that these sequences satisfy an Ornstein-Zernike inequality
forn^l:

(i) // the sequence {Fn} with F0 = I is a solution to the corresponding Ornstein-
Zernike equality for n ̂  1, i.e.

* (5-9)

then the Fn provide an upper bound on the fn:

F >f* n =J n'

(ii) If the gn,n^l,are replaced by the upper bounds Γn ^ gn and ifΓ0 = 1, then the Φn

defined as a solution to the new Ornstein-Zernike equality for n ̂  1, i.e.

(5.10)

with Φ0 = 1, provides an upper bound on the Fn:

Φ >Fψn = * n

Proof. The proposition follows easily by induction on n. One need only note that
the solutions, Fn and Φn, to the Ornstein-Zernike Eqs. (5.9) and (5.10) are
determined recursively from a knowledge of the zeroί/J terms.

In the following lemma, we use an Ornstein-Zernike inequality to obtain our
key estimate on separation of the masses.

Lemma 5.3. Suppose β > βc. Then for suitable choice of L and R,

Proof. Consider the walks which comprise %$N(L, R\ N > 1. These may be classified
according to the maximum x1 coordinate (in units of L) that the walk has achieved
before the C condition is satisfied in Sc(l). For example, those walks which have
travelled all the way to the Nth block before returning to satisfy the C condition in
Sc(l) contribute exactly ^(L,R) to %N(L,R).

We claim that the walks which go only as far as the Kth block before returning to
satisfy the C condition in Sc(l) yield a contribution to B^ which does not exceed
VKBN-K. Indeed, any such walk can be decomposed into two pieces: The first is a
walk which "turns around" somewhere in the Kth block, returns to satisfy the C
condition in Sc(l) (thereby also satisfying it in 5C(2), . . . ,SC(K — 1)), and finally travels
to the plane x1 = KL. Note that this walk need not satisfy the C condition in SC(K)
before reaching the plane xί = KL; hence the factor Vκ, rather than V#. The second
walk travels from the plane x^ = KL to x1 = NL, eventually satisfying the C
condition in SC(K + 1), . . . 9SJ(N), and perhaps also satisfying it in SC(K) by travelling
into the region xί < KL. Ignoring possible violations of the C condition in the Kth

block, and relaxing the constraint that the two pieces mentioned above not intersect
yields the desired expression.
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By the above reasoning, VΛΓ > 1 we have

B^ V; + NΣ VAv-κ^ VN + Y VA_«. (5.11)
κ=o κ = o

In this expression, we have set the convention V x = B l 9 since the recurrent walk
function was only defined for N > 1. If we supplement this with the conventions
BO = 1 and V 0 = 0, (5.11) becomes

BN^VN+ £ VKBN-K W V ^ l , (5.12)
κ = o

which is our Ornstein-Zernike inequality.
By Prop. 5.2, any solution to (5.12) as an equality provides an upper bound on the

BN. Moreover, this bound only deteriorates if we replace Vί = B1 by the upper
bound of Lemma 4.2, and VN, N ̂  2, by the upper bound of Lemma 5.1.

Let us therefore analyze the asymptotics of the equation

bN^vN+ £ vκbN-K9 J V ^ l , (5.13)
κ = o

with b0 = 1, VQ = 0, bl=vί = <5(K)α(L) and, for K^2,υκ = Ω(R)(x,(L)3{K-1}. Here

α(L) = e ~ mL. To do this, we define the Laplace transforms b~(z) = ^ bNzN and if (z) =
/v^o

Σ VNZN. Transforming (5.13), we obtain
N>0

b~(z) = [1 - ^(z)] ~1 = [1 - δuz - ί2αV/(l - α3z)] " l. (5.14)

The asymptotic (i.e., exponential) behavior of bN is determined by the smallest
real solution to

ιΓ(z0)=l. (5.15)

In our case, this amounts simply to the solution of a quadratic equation. Neglecting
the nonlinear piece in (5.14), the solution is just

z0(l) = ((5α)-1. (5.16)

A more refined analysis easily verifies that the above solution is quite accurate
provided that

(i) (5»α2, (5.17a)
(ii) Ω/δ»a, (5.17b)

and (iii) δ2/Ω»oc, (5.17c)

which can be arranged by choosing α = e~mL small enough. Of course, since logo
will provide our correction to the mass, we would like to take δ< 1. Thus we first
choose R such that δ = δ(R) < 1, which also fixes Ω = Ω(R). Then L is chosen as large
as necessary to ensure that (i)-(iπ) are satisfied. We thereby obtain

^ δ-i(κy»L[i _ (Ω/4δ2)e~mL + 0(e~2mL)l (5.18)
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which is the desired result, i.e.

mB(L, R) ̂  mL + \ log δ \ + 0(e ~ mL). (5.19)

6. Ornstein-Zernike Behavior of the Generating Functions

In this section, we establish that the cylinder and full generating functions exhibit
Ornstein-Zernike behavior at all noncritical temperatures. We first treat the
cylinder function, for which the result follows fairly easily from the analysis of the
previous section. The full generating function, which requires somewhat more care,
is examined in the second part of this section.

6.1. The Cylinder Function.

Theorem 6.1. For every β> βc,

mc(β)>m(β).

This of course implies:

Corollary. Conclusions (1), (2) and (3) of Theorem 3.3 hold for every β > βc.

Proof of Theorem 6.1. By Lemma 5.2, we may choose L and R such that mβ(L, R)^
mL. As explained at the beginning of Sect. 5, the inequality mc>m would follow
immediately from this and the obvious bound B$(L, R) ̂  CNL i/we could assert that

mcL = lim inf [ - N ~1 log CNL].
N-+oΰ

This minor annoyance can be circumvented in a number of ways. For example,
consider another class of cylinder walks S^(L, R) which agrees with 33£(L, R) if
K — NL for any positive integer N; otherwise, the walks in 53χ(L, R) satisfy the C
condition in 5C(1),... ,SC(N(K)), where N(K) is the largest integer smaller than K/L.
Let us denote the corresponding generating function by Bg(L, R). It is obvious that

C* g B° Wί. Thus mcL ̂  Mβ(L, R) = lim inf [- K~1 log B°(L, #)].
K->oo

It suffices to show that Mβ(L, R) ̂  mL. To this end, consider the walks in
95g(L, R). The contribution of those walks which satisfy the C condition in every
region 5c(i), 1 ̂  / ̂  N(K)9 before reaching the plane x1 = N(K)L may be bounded
above by χB$(L, R) with N = N(K). Otherwise, there is an earliest block P < N(K) in
which the C condition is not satisfied before the walk reaches x1 = N(K)L. It is
easy to verify that the contribution of these walks is no more than

χB%_PGPL(G(P_ί)L+A)
2. We have

B° ̂  χB* + χY B*_PGPL(G(P_ 1)L + A)
2. (6.1)

p=l

Using the upper bound (3.9) on G and the a priori bound (4.20) on B*, this implies

B$£χΊNe+m(L + R}e-μN (6.2)

with μ = min{mβ, 3wL}. Thus

mc ̂  MB/L ^ μ/L = min {mβ/L, 3m} > m, (6.3)
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which is the desired result.

6.2. The Full Generating Function. Here we extend the results of the previous
subsection to the full generating functions GL and G(L.a}. The strategy is to express
G~(z) in terms of (HΓ(z) and show that, in the vicinity of z = em, the required
modifications are analytic. This is done via a convolution analysis for the GL.

The first step is to define an analogue of CL for walks which need not obey a
cylinder restriction. Thus consider walks w:0— >(L;0) which satisfy nj(w) = Q or
n/w) > 1 for every jeZ. We denote the generating functions for such walks by

It is also convenient to have a direct correlation function for walks w:0->(L;α)
which obey a cylinder restriction only on the right boundary xί = L. We thus
consider that subset of the walks contributing to K(L.a)(β) which satisfy the additional
restriction rc/vv) = 0 for every; > L. The corresponding generating functions will be
denoted by D(Lιa)(β) and DL(/J) = £ D(L;a}(β).

a

As with the C functions, we may define the masses of K and O via inferior limits:

mκ(β) = lim inf [ - LΓ l log KL(j8)], (6.4)
L-»oo

mD(β) = lim inf [- L- 1 log DL(j5)]. (6.5)
L-*oo

By an analysis along the lines of Th. 6.1 (cf. Eqs. (6.1)-(6.3)), it is straightforward to
show that these masses are strictly larger than m:

Proposition 6.2. Let μc(β) = min{wc(β), 3m(β)}. For every β > βc9

and

Thus the IK and O functions retain the essential property of the direct correlation
function. This enables us to establish our principal result:

Theorem 6.3. For every β> βc:
(1) there exist finite, positive constants C(β) and Δ(β) such that

\GL(β)e+m(β}L-C(β)\^e-Δ(β)L;

(2) there exist finite, positive constants α(β) and ε(β) such that for allaeZd~i satisfying
\a\<ε(β)L,

(3) m(β) is real analytic.

Proof. Analyticity oϊm(β) has already been established in the corollary to Th. 6.1,
since the mass of the full generating function is identical to that of the cylinder
function.
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In order to prove (1) and (2), we perform another convolution analysis. To this
end, consider all walks which contribute to GL. Each such walk either has no pointy
for which nj(w) = 1 or it has at least one. The contribution of the former walks is just
IKL. In the latter case, we may locate the outermost "pair" J, = N + 1 anάjr = L — P,
of points for which n/w) = 1. (We of course include the special case N + 1 = L — P of
a degenerate pair.) It is easily seen that the contribution of such walks is exactly
O N H L _p_ ( Λ Γ + 1 ) e~βDP. We thus have the identity

GL = KL + e-' Σ Σ D N D P H L _p_ ( N + υ (6.6)

with the convention H0 = 1. Transforming, this becomes

G~(z) - K~(z) + ze-^[D~(z)]2[HΓ(z). (6.7)

It is now straightforward to verify (1) and (2). For example, to establish (1), note
that (6.7) and Proposition 6.2 imply that GΓ(z) may be written in the form

G~(z) = 0(z)IHΓ(z). (6.8)

where g(z) is analytic in some disk \z\<Rg, with Rg > em. From our analysis of the
cylinder functions, we already know that (HΓ(z) has a simple pole at z = em and no
other poles in some larger region, so that it may be written in the form H ~(z) =
/z(z)[l — ze~m] ~ 1 with h(z) analytic in a disk of radius Rh > em. Thus

ze-mY\ (6.9)

where gh is analytic in a disk of radius R = mm{Rg, Rh}. Given (6.9), one need only
apply the Cauchy bounds to show that GL converges exponentially to C(β)e~mL for
some C(β) < oo (see [23], Eqs. (5.30)-(5.32)). Note, however, that both C(β) and the
rate of exponential convergence are determined by the coefficients in the power
series expansion ofgh, so that these "constants" will differ from those of the cylinder
function.

It is similarly straightforward (but tedious) to establish (2) by following the
analogous derivation for the cylinder function (see [23], Th. 5.10). One need only
note that the strictly larger masses of K and O imply analyticity of the residues.
Again, the constant ε(β) may differ from that for the cylinder function.
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