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We investigate the behavior of various spin-systems that are subject to the 
highly correlated and extremely diluted quenched disorder as provided by the 
fractal aerogel model. For these systems, it is (easily) established that, at all 
temperatures, the free energy is identical to that of the corresponding uniform 
system. The surface tension, however, behaves quite differently. Foremost, at 
any fixed temperature corresponding to the low temperature phase in the 
uniform system, there is a non-trivial curve in the aerogel phase plane dividing 
high-temperature behavior (zero surface tension) from low-temperature behavior 
(positive surface tension). The fractal aerogel has two distinctive phases in its 
own right: gel and sol. In the gel phase, the spin system has zero surface tension 
at all temperatures. In one region of the sol phase, the surface tension is shown 
to be equal to its value in the uniform system. Since part of this region borders 
on the gel phase, a certain portion of the sol/gel phase boundary is also the 
dividing line between high- and low-temperature behavior. Evidently, in this 
case, the surface tension is discontinuous at the phase boundary, on the other 
hand, there are well-defined length scales that diverge as the phase boundary is 
approached. This demonstrates an absence of scaling in these systems. 
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INTRODUCTION AND STATEMENT OF RESULTS 

Introductory Remarks 

In  th is  p a p e r  we i nves t i ga t e  t he  p r o p e r t i e s  o f  sp in  sys t ems  sub jec t  to  long-  

r a n g e  c o r r e l a t e d , . q u e n c h e d  d i lu t ion .  W e  are  m o t i v a t e d  in p a r t  by  a n u m b e r  
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of interesting experiments (e.g., refs. 3 and 10) on the superfluid transition 
for 4He absorbed in aerogels. Aerogels are very high porosity materials 
with a wide distribution of pore sizes. Despite the fact that the aerogel dis- 
places only a few percent of the volume of the 4He, it has dramatic effects 
on the superfluid transition, including an increase in the superfluid density 
exponent. Several years ago one of us proposed that these experiments 
could be explained by the effect of a wide distribution of pore sizes (11 ). 
The experimental system is modeled by spins on a lattice with random 
dilution representing the aerogel. The model's geometry is a generalization 
of Mandelbrot's fractal percolation process (12, 5) and has been referred to 
as a Mandelbrot aerogel (6). The dilution is constructed in such a way as 
to create a statistically self-similar distribution of connected pores. The 
geometry of this model is itself fascinating and apparently displays a non- 
universal percolation transition. Properties of the phase diagram and 
correlation length for the connectivity of this model were established in a 
previous paper (6) and are reviewed below. The behavior of spins in this 
geometry was studied in ref. 11 using renormalization group arguments. 

Although the problem of superfluidity in porous media is still con- 
troversial, the statistical mechanics of spins models subject to correlated 
dilution is a fascinating topic in its own right. A number of unexpected 
phenomena occur which have no analogs in spin systems with short-range 
correlated randomness. For example, for some parameter values, it seems 
that there are two distinct transition temperatures, one for thermodynamic 
properties and a second, lower temperature for properties such as the sur- 
face tension, spin stiffness, or superfluid density that require connectivity 
across the system. In the Mandelbrot aerogel model, the diluted sites con- 
stitute a random fractal and approach zero density. Thus, it is intuitively 
plausible (and proved here) that the thermodynamics of the system is the 
same as that of the pure system. Nonetheless, for some parameter values, 
the dilution is capable of disconnecting the pore space. If the pore space is 
"just barely" connected, the surface tension may vanish at a temperature 
less than the bulk critical temperature. The way in which the surface 
tension vanishes is also peculiar. It appears that for some values of the 
parameters, the stiffness achieves the pure system value until the transition 
temperature is reached at which point there is a discontinuous drop to zero. 
Finally, if the dilution is so sparse that it is incapable of disconnecting the 
pore space there, the stiffness is identical to the pure system value for all 
temperatures. (This last fact is the main result proved in this paper.) For 
certain versions of the model, it is also possible to define a correlation 
length, different from the bulk correlation length, which diverges even when 
the surface tension is discontinuous. Thus, at least in certain cases, these 
systems exhibit a manifest absence of scaling. 
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Weinrib and Halperin (13) discussed a spin model with quenched dis- 
order in which there are long-range correlations in the coupling strengths. 
The couplings are chosen as Gaussian random variables with correlations 
decaying as a power of the distance between the bonds. Although one 
might guess that sufficiently near the critical point, the form of the disorder 
would become irrelevant so long as the exponents describing the decay of 
correlations coincide, in fact this is not the case. The effects of fractal 
dilution are qualitatively quite different from the effects of long, range 
correlated Gaussian randomness. Indeed none of the facts proved in this 
paper occur in the Gaussian model; evidently certain notions of univer- 
sality do not apply when the disorder has long-range correlations. 

Description of the Model  and Summary of Results 

The model that we study was introduced in ref. 11, the starting point 
of which is a multiscale model of an aerogel (sometimes known as a 
Mandelbrot aerogel) of the type that was analyzed in ref. 6. Let us first 
indulge in a brief description of the aerogel proper: The aerogel is defined, 
for two dimensions, on the unit square. The square is subdivided into N 2 
smaller squares which are, independently, "retained" with probability Q or 
declared to be "pores" with probability 1 - Q .  The pores remain as such; 
however all of the retained squares are further subdivided, again into N 2 
pieces (now of linear scale N-2) ,  each of which, independently, may be 
declared a pore with probability 1 - Q or be retained for another round of 
subdivision. After n -  1 iterations of this procedure, a final step is per- 
formed, but this time the retention probability is given by some number p 
which a priori  bears no relation to Q. Those cells (now of linear dimension 
N - ' )  that have survived are to be thought of as particles, e.g., of silicate, 
and everything else is pore space. An analogous procedure can be used to 
construct an aerogel in any spatial dimension. 

The above-described aerogels may serve as a disordered medium on 
which we can define a statistical mechanics problem. The next step is to 
place spin variables on all the cells of the pores; the spins interact with the 
usual sort of Hamiltonian for a diluted medium. The choice of Hamiltonian 
of course depends on the physical system that one wishes to study. (Thus, 
to make contact with the liquid helium experiments, one should investigate 
the three-dimensional aerogels with X Y  spins in the pores.) However, in 
this preliminary investigation, we will confine attention to the simplest 
version of the problem, namely the q-state Potts models--and bond per- 
colation--in the two-dimensional aerogel. These systems are interesting 
enough in their own right and, when the analysis is finally completed, it is 
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our hope that many of the concepts will see a direct application in the 
more sophisticated systems 

On the basis of the above description alone, it is clear that the bulk 
thermodynamics is hardly affected by the aerogel disorder. Indeed, on a 
heuristic level, the gel sites occupy a set to which one can (loosely) assign 
a Hausdorff dimension of d H = 2 - Ilog Q/log N[; hence the overall clout of 
the disorder is confined to a vanishingly small faction of the system The 
result, which we prove later, is that the free energy per spin is identical to 
that of the uniform system. However, the behavior of a system is not com- 
pletely determined by its bulk thermodynamics, there is also the arena of 
surface physics. Thus we turn to the question of surface tension for spin 
systems in aerogels. 

In the analysis of the aerogel model (11, 6), two distinctive phases 
were discussed, a sol phase and a gel phase. The former was defined by the 
property that the chances of having a connected crossing between opposite 
sides of the square in an nth-stage aerogel tended to zero with n. In 
the latter, these probabilities are uniformly positive. Hence, despite the 
low density, in this phase, there are gel paths that can fractionate the 
system. 3 

Let us pause for a brief discussion of the sol-gel phase diagram. 
(Please consult Fig. 1A.) In the upper left corner- -p  and Q close to 
one--lies the gel phase. All else is regarded as sol. However, there are (at 
least) two distinctive types of sol, which, in a crude manner can be 
classified as follows: (a) The multiscale parameter Q is too small to allow 
for gel formation; (b) Q "would have been large enough" but the gel was 
broken up, at the smallest scale, due to a small value of the parameter p. 
The division point Qc is the translation point in the Mandelbrot percola- 
tion process (11, 5) (this process may be defined by setting p = Q) and the 
upper portion of the line Q = Qc constitutes the left boundary of the gel 
phase. 

Consider now the influence, or lack thereof, that is exerted on the spin 
system by this disorder. In the gel phase, the pores can be isolated from 
one another and it is plausible that this will cause a depression of the 
surface tension relative to its value in the uniform system. In fact, a careful 
look at any reasonable definition of surface tension points to the fact that 
in this phase, for all positive temperatures, the surface tension will vanish. 

It turns out that the notion of gel-connectedness used in ref. 6 is not quite the relevant 
concept for (nearest neighbor) spin systems defined in the complement of an aerogel. 
Nevertheless, all the relevant results in ref. 6 go through with an appropriately redefined 
version of connectedness. 
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Fig. 1. (A) Sol phases (a) and (b) determined by value of the long-range parameter, p*: 
,-connected percolation threshold (relevant notion of connectivity), pa(Q): Lower portion of 
the sol-gel phase boundary. (B) Vertical portion of the phase boundary coincides with that 
of the sol-gel boundary. Break occurs below pa(Qc) Right endpoint of the phase boundary 
is presumably the transition point for the single-scale disordered system. 

This constitutes our first result. (For one particular definition of the surface 
tension, this is essentially trivial.) 

By contrast, if Q~< Qc (and, say, p =  1) after a finite number of itera- 
tions, a connected path of vacant blocks will cross the unit square. As we 
continue the iteration process, the width of this gap--as measured in lattice 
spacings--grows. Thus we have a swath of uniform spin system that is of 
"near thermodynamic proportions" running across the unit square. Under 
these circumstances, it is clear that if the pure system is in the low- 
temperature phase, the aerogel spin system will have a positive surface 
tension. This is indeed the case. Furthermore, and somewhat surprisingly, 
this surface tension is exactly equal to that of the uniform system. A proof 
of the latter statement is the major achievement of this paper (Whether or 
not the result is obvious, a rigorous demonstration is somewhat intricate.) 

Let us now consider Fig. 1B, the full phase diagram for the aerogel 
spin system at some fixed temperature below the transition temperature of 
the pure system, with p and Q allowed to vary. First, recall that for all p 
and Q, the system is thermodynamically in the low-temperature phase. 
Nevertheless, as we have just argued, the surface tension exhibits both 
high- and low-temperature behavior. The boundary between these phases 
follows the vertical sol-gel phase boundary for large p and then extends 
into the sol phase. The details of this curve will depend on the temperature, 
but the general "features cannot differ too much from those displayed in the 
figure. 

An eminent property, which may be of some significance, is the fact 
that at least along part of the phase boundary, the surface tension jumps 
discontinuously. This effect is reminiscent of an infinite order transition and 
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indeed seems to be the hallmark of these random fractal systems. Further- 
more it is possible, after the fashion of ref. 6, to associate a length scale 
with the low-temperature phase. Needless to say (again, with rigor, only 
along the vertical portion of the phase boundary) it is readily established 
that this length scale diverges. Since the surface tension itself defines a 
length scale, we have thus exhibited an absence of scaling. Below the gel 
phase [i.e., Q >  Qc and p<pc(Q)] we suspect that similar and perhaps 
even more interesting behavior is possible. 

Organization of Results 

The organization of this paper is as follows: 
In Section 1, we first define, in full detail, the aerogels and their 

associated statistical mechanical models. Then we define, and prove the 
existence of, the relevant notions of surface tension in these various 
systems. 

In Section 2, we state and prove most of our principal results. First 
(and readily established) the vanishing of the surface tension in the gel 
phase at all temperatures (Theorems 2.2 and 2.4) and the existence of a 
high-temperature phase for p close to pG(Q) (Theorems 2.3 and 2.4). Then, 
for the case of percolation, we show that for Q < Qc (and at bond density 
above the percolation threshold) the surface tension is equal to the usual 
surface tension for percolation (Theorem 2.6 and its corollary). We state, 
but do not prove, in Theorem 2.7 the analogous result for the q-state Ports 
models. Finally, we conclude this section with some remarks on scaling. 

In Appendix A, we provide a proof that the (bulk) fee energy in these 
models is always equal to that of the uniform system and hence that 
thermodynamic quantities are insensitive to any of these considerations. 

In Appendix B, we start with some technical results concerning the 
low-temperature phase of the uniform Potts model and then provide a 
proof of Theorem 2.7. 

1. DEFINIT IONS A N D  PREL IM INARY RESULTS 

1.1 Definit ion of the Model  

At the foundation of this work is the multiscale model of percola- 
tion, introduced in ref. 12, that we will here refer to as the fractal (or 
Mandelbrot) percolation system. The model has been described elsewhere 
in detail (e.g., in ref. 5; see also ref. 1 for an alternative discussion), so we 
will be concise. 
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The process is defined on the unit square which will be denoted by Ao. 
Let N >  1 denote an integer and let Qe(0 ,  1). We divide Ao into the N 2 
smaller squares [( i -1) /N] x [ ( j -1 ) /N] ,  O<~i, j<~N, each of which is 
independently discarded with probability 1 -  Q or retained with proba- 
bility Q. The (closure of the) union of the retained squares is denoted 
by A~. We obtain A, +~ c A,, by performing the analogous procedure on all 
the surviving squares of A,. The limiting configuration (which is well 
defined) is denoted by Ao~: Ao~ = N~=~ A,. We use the notation 

O,(Q)=Prob(A,, contains a connected path of surviving 
squares from the top to the bottom of [0, 1] 2) (1.1) 

In Eq. (1.1), two (surviving) squares are deemed to be connected if they 
share an edge in common. The phase of the Mandelbrot percolation system 
is indicated by the quantity 

O~(Q)= lim O. (1.2) 
n ~ o o  

If 0o~ > 0, the system is said to percolate. It is known that there is a 
Qc e (0, 1 ) above which there is percolation and below which there is not. 
Furthermore, it is known that Ooo(Qc)> O. 

Next, we describe the (fractal) aerogels that were introduced in ref. I 1 
and studied in ref. 6. These depend on three parameters, p, Q and N with 
Q and N exactly as described above and p e (0, 1). Succinctly put, the 
aerogels are defined by starting with an (An) from the Mandelbrot process. 
Then, for each A,, we create a C,§ ~ A,, by subdividing the cells of A, as 
before, but this time using p rather than Q for the retention parameter. If 
p t> Q, this is seen to be essentially equivalent to the old fractal percolation 
problem; however, if p < Q, subtle differences may arise. We may denote a 
generic sequence of aerogels by ((Ao, C1), (Al, C2), (A2, C3) .... ), but there 
is a priori no limiting set for the C's. To define our phases in the aerogel 
problem, we could start as in Eq. (1.1) with A, replaced by C.. (This 
definition was used in ref. 6.) However, for present purposes, the relevant 
definition is 

O,(p, Q)=Prob(Cn contains a .-connected path of surviving 
�9 squares from the top to the bottom of [0, 1] 2) (1.3) 

where, in Eq. (1.3), two squares are considered to be .-connected if they 
contain even a single point in common. The reason for the use of *-con- 
nectedness in this work will become clear once we introduce the spin 
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degrees of freedom for these problems. There is no proof of a large-n limit 
for the On(p, Q) (for either definition of connectedness). Hence we define 

Oo~(p, Q)=liminf On(p, Q) (1.4) 
n ~  c ~  

The gel phase consists of those points (p, Q) for which O~ > 0 and all else 
is considered to be the sol phase. It is known (6) that the gel phase includes 
the phase boundary. The relevant features of the phase diagram and some 
additional notation can be found in Fig. l a. 

We now turn to the definitions for the spin systems that use these 
aerogels as a background medium. Let An c 7/2 denote the sites with xl and 
x2 coordinates lying between 1 and N n (so that IAnl = NZ~). We may iden- 
tify [0, 1] 2 with A,, in a natural fashion by cutting [0, 1] 2 into N 2'' smaller 
(disjoint) squares and placing the sites of A,, in the centers. In the same 
way, we may associate Cn with a subset of A m, and of equal notational 
importance is the complementary set An\C,,, which we denote by K,,. The 
sites C, are, of course, the gel particles and the K~ represent the pores in 
which reside the spin degrees of freedom. In the bulk of this paper, we will 
be concerned exclusively with the q-state Potts models (and, more often 
than not, Bernoulli percolation), so we defer the formal definitions for 
general spin systems to Appendix A and focus here on the random cluster 
representations of these specialized models. 

Along with the sites of Kn, we have to consider the sites of the 
boundary 0A~ of An; as usual, OAn are those sites in Z 2 that are not in An 
but have a neighbor in An. Between each pair of neighboring sites of 
K,, w OA,,, we may envision a bond. The totality of all such bonds will be 
denoted by ~ , .  A configuration of bonds is a collection of some of the 
bonds of K n and, generically, will be denoted by an a~. The random cluster 
measures, for a fixed realization K,,, assign the weights 

W(co) = (1 - e -P )  I'~ e-Pl~nX~ c(~') (1.5) 

where in the above, fl is the inverse temperature, [ - [  denotes the number 
of bonds, and c(a~) is the number of distinct bond clusters--including 
isolated sites--in the configuration m. Still, c(a~) is ambiguous because we 
have not yet specified the boundary conditions. One alternative is to forbid 
the occurrence of any bond connecting a site of K,, to a site of aAn and 
then to just count the number of components. These are the so-called fee 
boundary conditions and correspond to free boundary conditions in the 
spin system. Another possibility is to count all bonds that are connected to 
any boundary site as part of one single cluster. These are the so-called 
wired conditions and correspond to the spin system with all the boundary 
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spins locked in the same state. The sum of all the weights is equal to the 
partition function for the spin system with the appropriate boundary con- 
ditions. We denote these objects by Y{f(K,) and ~ ( K , )  respectively. 

A little reflection on the weights in Eq. (1.5) (or the spin systems from 
which they came) reveals that ,-connectedness is indeed the relevant 
concept for the gel sites in these systems. Let V1 c K,,, V2 = K , \ V I  and 
suppose that C, separates V1 and II2. (By this we mean the usual sense of 
separation: each connected path between V~ and 112 that lies in A, uses at 
least one site of C,.) Then, by definition, no bonds in K,  can reach from 
V1 to II2 and, consequently, the interaction term qlC(o~)l in Eq. (1.5) factors. 
Under these circumstances, the bond configurations in V~ and V 2 are 
statistically independent and C, has destroyed the coherence between the 
two halves of K,,. Evidently, then, the relevant sort of connectivity for gel 
sites is that of the boundaries of connected sets of Z 2, namely ,-connected- 
ness. 4 In particular, if gel sites ,-percolate, in accord with the usual infinite- 
volume notions of percolation, it is obvious that the spin systems can 
only exhibit high-temperature behavior. However, gel formation in the 
Mandelbrot aerogels is a subtler form of ,-percolation and hence a more 
detailed analysis is required. 

The weights in Eq. (1.5) can, of course, be written in terms of weights 
for dual bonds. To this end, consider the sites on the dual lattice 
(Z + �89 (Z + �89 which are endpoints of the bonds transverse to the bonds 
of ~,,. Let K,* denote the set of these bonds. (The particulars of K* will 
depend on the boundary conditions.) For each co c ~ , ,  we may associate 
a dual configuration co*= K,* by declaring each dual bond b*e K* to be 
occupied, or open, if the corresponding b e co is vacant. Defining, for future 
simplicity, )~ = e-P, we will simply write 

W*(CO*) = ) ro~'l( 1 - ).)IK:\o~'l qC(,o; (1.5") 

without bothering to perform a transformation on the term c(co). 
The essential properties of the measures induced by the weights in 

Eq. (1.5") are well known: for q/> 1, the measures are F K G  and dominate, 
in the sense of FKG,  the (dual bond) Bernoulli measures at (dual) bond 
density 2. 

Of crucial importance in the analysis of these systems is the dual 
notion of connectivity in A,, against the background of disorder sites C,,. 
As we have discussed, the sites--and hence the bond clusters--of 2, can be 
isolated by the presence of ,-connected circuits in C,,. Thus the gel sites 

4 The reader will recall that two sites on 7/2 are *-connected if they are nearest or next nearest 
neighbors and that if V=Z 2 is connected with IVl < co, then the set of sites in the infinite 
component of 72\ V that have a neighbor in V---e.g., the external boundary--is ,-connected. 
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and the dual bonds are allies. The partnership can best be exhibited by 
sticking with the full lattice )-n and for the gel configurations Cn~An 
declaring that the quartet of dual bonds surrounding each site of C~ are 
already serving as open dual bonds. For any Cn and any o9 c Kn, along 
with a specified boundary condition on OAn, it is clear that this leads to the 
correct counting of c(o9). Henceforth, when we speak of dual connections, 
on An we will always mean connections via occupied dual bonds and the 
"preoccupied" dual bonds surrounding the gel sites of Cn. 

1.2. Sur face  Tension in a Porous M e d i u m  

Our definition of surface tension in these random systems begins in the 
standard fashion. For example, in the Ising version, for a ftxed disorder 
realization, we consider the ratio of the partition function with plus/minus 
spins placed on the top/bottom half of aA~ to the partition function in 
which An is surrounded by plus spins. In the language of the random 
cluster representation, it turns out that this is just the probability (for fixed 
realization Cn) that, in the "wired" ensemble, there is no path of open 
bonds in Kn connecting the top and bottom halves of OAn. Similar observa- 
tions hold for all integers q > 2. As is traditional, this probability serves to 
replace the above described ratio in the percolation (or noninteger q) 
versions of this problem. 

For the uniform systems it is well known, at least for q >~ l, that this 
probability (or ratio of partition functions) has the asymptotic scaling of 
exp { - a ( f l )  Nn}, where a (which also depends on q) is called the surface 
tension. In the random systems, we may denote this quantity by 
exp {-SnNn},  but here, Sn(Cn) is itself a random variable. The question 
before us now is how to go about extracting a limiting value from the 
sequence (S,). There are, in fact, two standard procedures for extracting a 
limit but both of these turn out to be ill suited to our purposes. 

The first method is to look for "typical" values of the surface tension 
and amounts to the (or a) large-n limit of the average of Sn. For systems 
where the disorder has finite-range correlations, it is expected that the 
random surface tension will be self-averaging and indeed the existence 
(with probability one) of a limit for Sn that (with probability one) has the 
same value for all disorder configurations can be established in a number 
of cases. Under these circumstances, it is this surface tension that is most 
likely to be of experimental relevance. Unfortunately for us, this is clearly 
the wrong object. Consider the gel phase: In this phase we anticipate that 
the surface tension will vanish. However, it is seen that Sn is equal to the 
uniform value a(fl), with probability greater than ( 1 -  Q)m. Hence, self- 
averaging is destined to fail and, furthermore, if we take the limit of the 
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average or the average of the limit (assuming that either exists), we end up 
with the wrong answer. 

The second standard method for producing a surface tension is to take 
seriously the analogy between e -s"N" and a correlation function. In this 
case, the appropriate action would be to average the quantities e -s"N" and 
then take - N - "  times the log of this average. The difficulty here is the 
potential for dominance of the final result by atypical configurations. (And 
this is a potential source of difficulty in any disordered system.) Consider, 
for example, the region where QN~< 1. Here, it is easily shown (5) that 
with probability one the system is uniform. Hence, in this region, the 
surface tension should clearly be equal to a(fl), which, we note, tends to 
infinity with 1~. On the other hand, it is easily seen that with probability 
pN, QN,-,... Qu, the surface tension is zero. Evidently, at least for large r ,  
this method also produces the wrong answer. 

For  these systems, we propose two methods of defining the surface 
tension. Both definitions have the decisive advantage that they avoid all of 
the problems discussed above. 

In our first definition, we take R~> 1 and consider the quantity 
et~/m s.N.. We define 

and 

~R = lim -- R log E(e-I  l/m s.u.) (1.6a) 
n ~ o o  

~ =  lim ~R (1.6b) 
R ~ o o  

In a short-range system that enjoys the "self-averaging" property, one 
would anticipate that a is equal to the typical surface tension. Notice,that 
if a significant fraction of realizations of the system have vanishing surface 
tension, then a vanishes; thus we anticipate that ~ = 0 in the gel phase. 
Furthermore, the difficulty in the sol phase posed by exponentially rare 
realizations of the disorder with no surface tension is avoided by the large- 
R limit. 

The second definition is motivated by experimental considerations. In 
real "fractal" materials such as aerogels there is an upper cutoff beyond 
which the material becomes uniform. If this length is much less than the 
macroscopic leffgth scale, it follows that the experimentally accessible 
surface tension will be self-averaging. On the basis of these considerations, 
we examine a sequence of models, each of which is actually well defined at 
both the microscopic and thermodynamic level. The present model, in a 
vague sense, is the limiting version of this sequence. To define the kth 
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model, we consider the square lattice and stipulate that each block of side 
N* houses an independent copy of Ck. (Thus, in a square of side N", it is 
as though the first n - k  iterations of the process somehow resulted in full 
retention.) Such a system, on 7/2, has correlations that ultimately must be 
regarded as short-ranged. It is therefore not difficult to believe--and in our 
case straightforward to prove-- tha t  a well-defined typical surface tension 
exists for these systems. Furthermore, it is clear that these objects are 
monotone increasing, so, denoting the various surface tensions by elk1 we 
may define 

~ * =  lim o~k ~ (1.7) 
k ~ o o  

We have not succeeded in finding a general relationship between the 
surface tensions ~ and 0c*. However, it turns out that in all the regions 
treated in this paper, we can prove that 0~ = 0t*. 

Let us now turn to the elementary task of establishing the existence of 
these limits. 

P r o p o s i t i o n  1.1. For the q-state Potts ferromagnets defined 
against the background of the above-described random aerogels, let 
Y'~ (K,) denote the random partition function that has all the boundary 
spins above the  midline in one particular state and all spins below the 
midline in another. Let e -s"N~ denote the ratio . ~ ( K , , ) / ( 1 / q ) ~ ' ( K , , ) .  
For the general random cluster models with q/> 1 let e -s"N" denote the 
probability, in the wired ensemble of K, ,  that there is no path of open 
bonds that connects the top and bot tom halves of OA,. Then, for any R, 

R 
an = ,limo~ - ~7  log E(e -r l/m S.N~ 

exists and furthermore, 

0c= lim 0c R 
R ~ o o  

exists. Next, we consider the q-state Potts ferromagnets or random cluster 
models with q > l  in which each square block of 7/2 of the form 
nl N k ~< xl < (nl + 1) N k, n2 Nk  ~ x2 < (n2 + I) N k is replaces by an inde- 
pendent realization of K k. Define exp ( - S P ~ 1 m N  k) is a similar ratio of 
partition functions or crossing probabilities for the square of side m N  k 
bounded by the positive coordinate axes. Then 

~'k~ = . l i m  9 ~ 
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exists with probability one and, with probability one, is independent of the 
configuration. Furthermore, 

oc*= lim or 

exists. Finally, as functions of p, Q and fl these quantities all exhibit the 
expected monotonicity properties: 0~ and ~* are both monotone decreasing 
(i.e., nonincreasing) in p and Q and increasing (i.e., nondecreasing) in ft. 

Proof. It is noted (without proof) that for integer q larger than one 
the above specified ratio of partition functions is equal to the probability 
of observing the above described random cluster events in the associated 
random cluster model. We will therefore work in the random cluster 
representation and, to keep things simple, focus exclusively on the percola- 
tion case. For any q > 1, the arguments are nearly the same provided that 
some care is taken in dealing with the boundary conditions. Finally we will 
assume, for simplicity, that N is odd. 

In the dual representation, the required event admits the far simpler 
description that there is a connected dual crossing between the (dual) 
boundary sites on the midline that are on opposing sides of the boundary. 
We will therefore work in this representation. 

Let us consider first the quantity S,: A dual crossing of the desired 
type is achieved if, for example, the N squares across the midline are all 
retained and N crossings of this type are achieved on the smaller scale 
squares. This gives the estimate 

_S(I~ Nn-I  S (N) Nn-I e--S"N">~ZT t...ZrNe "-J . . . e -  ,-~ (1.8) 

where Zr,, is the indicator for the event that, on the first iteration, the mth 
square along the midline is retained and exp t _  v~,-) ~ r - - ~  is the prob- 
ability of observing a left-right crossing of the described type on the 
associated smaller scale square. This gives 

Ee-~l/m S"N" >>. QN[ E( e-~I/mS"-'N"-') ]N (1.9) 

since the quantities exp ( -  S~["_)aN "- I )  are independent and equal, in dis- 
tribution, to exp ( - S , _  IN"- i ) .  Equation (1.9) easily leads to a restricted 
subadditive bouhd but it is not, in and of itself, quite enough to ensure the 
existence of a limit. However, by repeating this sort of argument on k scales 
we obtain the estimate 

[Ee_~lm)s,u,] >1 QNkQNk-' ... QN[Ee-~UR)S,_kN,-k]Nk (1.10) 
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Fixing n - k = j ,  we may rewrite Eq. (1.10): 

[Ee-(]/RI s,Y,] i> QtmIN-]~l z~-JEe -mRi s;vJ]N,-J 

o r  

(1.11a) 

--loge(e--~l/R~&N~) <~ N I logE(e -Il/n~s/Ar/) 
N" N- -  1 N / [log Q[ N/  (1.1 lb) 

From Eqs. (1.11), the existence of the limit an is readily established. An 
elementary convexity argument can be used to show that the ~R are 
monotone increasing in R and thus 0c= limR~ o~ an, exists 

Turning attention to the quantities r.rk] o~,, , a stronger version of 
Eq. (1.8) is readily derived; here we have for any positive integers 
rnl, mE .... with Zs mj=m 

exp( - ~[k]  mN k) >~ l-I exp( ~/)[k] k --6e,,,j mjN ) (1.12) 
J 

where the 6e~}tk] are independent of one another and equal, in distribu- 
tion, to ~ ] .  Equation (1.12) easily leads to a subadditive estimate and 
(the elementary version of) the Kingman theorem (9) may be applied. The 
result is that, with probability one, the 6g~ kl converge to some 0t~k I which, 
with probability one, is a constant. 

It is clear that the 6etk]N,. are distfibutionally smaller than the ~[,k+ ~] 
since the configurations associated with the latter can be constructed out of 
those associated with the former by the insertion of an additional (large) 
scale of random pores. Hence the 0~[k ] are increasing and the large-k limit, 
~* exists. 

Finally, the resulting quantities e and 0t* inherit the various described 
monotonicities that are manifest in the sequences of which they are the 
limits. | 

For fixed, sufficiently large r ,  let us examine the phase diagram in the 
p, Q unit square As usual, we may define the high-temperature phase (e.g., 
according to ~) as the set of points (p, Q)E [0, 1] 2 such that a(p, Q)=0 .  
We claim that due to the monotone properties of =(p, Q), there is a well- 
defined phase boundary: Indeed, this phase boundary is just the graph of 
the function PH(Q)= supp{~(p, Q)>0}  along with (at most) a countable 
number of vertical segments for Q in some interval (which turns out to be 
(Qc, 1]). 

We conclude this section with the following observation: 

Remark. In disordered systems with short-ranged correlations, it is 
generally believed that quantities like ~g (e.g., inverse correlation lengths) 
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are of the same order of magnitude. In particular----even for the aerogels--it 
is easy to show that if 0c R vanishes for any R, then all of the eR are zero. 
Indeed, suppose that e -s"N" satisfies 

E(e -S"N") >1 e -t"N" (1.13) 

with l im,_  o~ t,, = 0. Then we have 

e - t n N n  - -  e -2tnNn 1 e - tnNn 
Pr~ 1 - - e  -2''N" >~ 2 (1.14) 

But then for any R, 

1 t N n E(e tl/ms"N") > ~  e - "  e-C2/m,,N, (1.15) 

and hence a n ~< R x [lim . . . .  (1 + 2/R) t,,] ~ O. It is therefore a little sur- 
prising that in this system the 0t's do not scale together. Indeed, it turns out 
that as we approach a certain portion of the phase boundary, for any finite 
R, 0c R tends to zero continuously while e remains uniformly positive 

2. BEHAVIOR OF THE SURFACE TENSION FOR S Y S T E M S  IN 
AEROGELS 

2.1. Results for the High-Temperature  Phase 

Our first substantive results concern the "obvious fact" that in the gel 
phase, the surface tension is zero. For the quantity 0~(p, Q, ~), this is indeed 
obvious and is an immediate consequence of the following: 

L e m m a  2.1. Let T, denote the probability of observing in the wired 
ensemble of A,,, a dual path (consisting of occupied dual bonds and/or 
occupied gel sites) connecting the left and right sides of A,. Suppose that 
the average of T,, is bounded away from zero uniformly in n: 

E (Tn)>~x>0  

Then the surface tension, ~(p, Q, fl), is zero. 

proof. LeG us again assume, for simplicity, that N is odd. We claim 
that the statement E(T,,)>>.x implies that there are (deterministic) sites 
a = a(n) and b = b(n) on the left and right sides of the square such that the 
average probability that a and b are connected is bounded below by a 
power of N". Indeed, for any one of the sites a~, a2 .... on the left side 
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of A,, and any of the sites b l , b 2  .. . .  on the right, denote by T ta''bj~ the 
probability of observing a dual connection between the sites ai and bj. 
(We remark that, as far as the aerogel disorder is concerned, this is still a 
random variable. Indeed, any of the quantities T,t, "'' bj~, and even T,,  can 
- - fo r  integer q greater than one- -be  written as the ratios of partition 
functions with various boundary conditions.) Clearly, in each disorder con- 
figuration, 

T,,<. ~.. T t'''bj~ (2.1) 
i,j 

Hence, there must be one pair [ a, b ] for which 

K 
E( T~" hi) >1 N2n (2.2) 

Of course it is tempting to say that the privileged sites are just the ones in 
the middle, but there is no real way of proving this. However, with only a 
little work, we can use the above to show that e -s"N" has subexponential 
behavior with probability that tends to zero slower than exponentially fast. 

Indeed, let us consider the N " - k  squares of side N k which, as in 
Proposition 1.1, bridge the middle of the square of side N".  With proba- 
bility exceeding 

QN.-k QN. -k - ,  . . . Q > QJv"-k/(N-- I ) 

all of these squares and all of their ancestral squares are retained. If, in 
each of the squares of scale N k we insist on seeing translations and reflec- 
tions of dual bond connections between the sites corresponding to a(k )  and 
b(k) ,  then we have produced sites a* and b*, within a distance N k of the 
midline, such that 

K ](n--k) Q N'-k/(N- 1) 
E(Tta*'b*~) ~> ~-~  (2.3) 

It is noted that the various events and functions under consideration are all 
of the same F K G  type and that the Ha r r i s -FKG inequality has been 
instrumental in the derivation of Eq. (2.3). Finally, with probability larger 
than pUkQ Nk/(N- t), we can ensure that all sites with xl = 1 or x 1 = N" that 
are a distance closer than �89 ~ from the midline are gel sites. Under these 
circumstances, whenever there is a connection between our favored a* and 



Aerogels and Interfaces 133 

b*, there is also a connection between the midpoints of the left and right 
boundaries. Evidently, making further use of the Harr is -FKG inequality, 

E(e-S"U")/> 

Choosing, e.g., k=n/2, Eq. (2.5) easily gives us ~1=0,  from which it 
follows (cf. the remark at the end of Section 1) that 0c = 0. | 

As an immediate consequence, we get the following result. 

Theorem 2.2. Let (p, Q) be any point in the gel phase. Then, in 
any of the q-state models with q >/1, 

o~(p, Q, fl) = 0 

for all ft. 

Proof. By definition, in the gel phase, there is a left-right crossing of 
A,, by gel sites with probability uniformly bounded below away from zero. 
In these configurations, we have T,, equal to one even before we consider 
the statistical mechanics. II 

The above is, of course, not particularly surprising: percolation of the 
aerogel has broken the space into disconnected regions that act inde- 
pendently. Indeed, it is clear that Theorem 2.2 holds for any statistical 
mechanics model in an aerogel for which a surface tension of the form 
o~(p, Q, fl) can be defined. [We will deal with the other surface tension, 
a*(p, Q, fl), following Theorem 2.3.] As noted, the result is valid all the 
way down to zero temperature. It is therefore not hard to believe that just 
below the sol-gel phase boundary [p  <~pa(Q)] similar results should hold 
at finite temperatures and in particular at temperatures well below the 
transition temperature of the uniform system. For our spin systems, we will 
make (rather inefficient) use of the finite temperature to enhance the 
(effective) gel-site population and drive the system back into the gel phase. 

Recall from our discussion of duality that the dual measure has the 
bond density parameter 2 = e -p and, for q > 1, these measures dominate, in 
the sense of FK.G, the ordinary bond percolation problems at density 2. 
(A proof of this can be found in ref. 8.) This dominance will allow us to 
establish the above assertion using independent percolation methods. 

Theorem 2.3. Let 2 = e - P > 0  and Q>Qc. Then there is a 
p(2) <Pc (Q)  such that for all p > p ( 2 ) ,  ct(p, Q, r )  vanishes. In particular 
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(but of significance only if fl is greater than the transition temperature) we 
may estimate 

<pa(Q)  - [1 - ( 1  __ / ~ ) 1 / 2 1 4  
p(2) 1--[1-(1--2)1/2] 4 -ff( / l )  

Proof. It is sufficient, by the dominance argument, to establish this in 
the case q = 1. In our discussion of duality it was argued that a single gel 
site is "as good as" having the four dual bonds that surround it in an open 
state. Conversely, we might say that if the four dual bonds surrounding a 
given site are open, this is "as good as" having a gel site present. We can- 
not, however, just write down a factor of 2 4, because these effective site 
variables are not independent. But we can circumvent this little problem 
with the following device: Let us imagine that each (dual) bond is replaced 
by two possible bonds, a red one and a yellow one, that operate independ- 
ently at densities y(2) and r(2), respectively. We will agree to call the 
original bond open if either the yellow bond or the red bond is open. To 
fix the density, we require that r + y - y r = 2  or, i f y = r , y =  1 - ( 1 - 2 )  1/2. 
Now, we may claim an effective site event for sites on the odd sublattice if 
they are surrounded by four yellow bonds and on the even sublattice if 
they are surrounded by four reds. This gives us an overall "density" of 
p + (1 - -p ) [  1 -- (1 -- 2)1/214 ~_~.ff(~.). 

Using the above, it is easily seen that 

E(T,) /> O,(p(2)),  Q) (2.5) 

which, if p(2) matches or exceeds pc(Q),  we agree is uniformly positive. 
The result now follows from Lemma 2.1. | 

We will dispense with "the other surface tension" momentarily; our 
first step wilt be the development of some (inevitable) notation for 
describing the systems with only k scales of disorder. 

D e f i n i t i o n .  Consider the usual Mandelbrot percolation process 
down to the n th level and let us discuss an equivalent construction of the 
set A, that will allow us some additional flexibility. The new construction 
is implemented by working outward from the smallest scales: We start with 
the unit square cut into N 2" smaller squares (or, if easier to visualize, the 
lattice A,,). Let G, denote the random subset that is obtained by independ- 
ently deleting [or  retaining] each square of side N - "  with probability 
1 -  Q [or  Q]. In other words, so far, we have independent percolation at 
density Q on a lattice of size N n x N". Regardless of what transpired in the 
formation of G,, let G,_  1 be constructed in a similar fashion, but this time 
we will identify each N - t " - ~ x N  -~'-1~ square as a single site to be 
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retained or discarded. (Or, back on A,,, each N x  N block of sites is inde- 
pendently retained or discarded.) In a similar manner, we can obtain any 
G,_ k with 0 ~< k < n. We let 

k - - I  
( k )  __ G,, - N G,,_j (2.6) 

j f f io  

With the obvious identifications, it is clear that G(, ") is statistically equiv- 
alent to the set A,,. 

The above construction can also be implemented for the Mandelbrot 
aerogels: Here the first step takes place using p as the retention parameter 
and the final ( k -  1 ) steps are the same as above. In these cases, we will use 
the notation H(,: ) (as opposed to a G) to underscore the distinction between 
the aerogel-type or the unadorned Mandelbrot-type sets 

The sets HI, k) and GI, k) are exactly the k-scale systems restricted to a 
lattice of scale N". Thus, the H~k)--with n large--will be used in our discus- 
sion of the ~ 'k] '  However, these objects are also essential for our analysis 
of the full process: GI, k) may be used for probing the system down to the 
scale N - "  without having exploited the benefit of the larger-scale vacancies. 
These, in turn, can be kept in reserve as an independent operating force. In 
any case, if we allow n --+ oo with k fixed (and large), we have at our dis- 
posal a genuine thermodynamic system with many features of the current 
idealization. 

As a technical device, we will also consider configurations ~(k) on 
A, + e that are formally equivalent to the configurations G~, kl except that the 
individual vacant/occupied sites in G(f ~ are now identified as N e x  N e 
blocks of sites with the appropriate character. Put differently, C:_(k) is "J n ; l  

constructed from G~ k) by performing an additional E subdivisions under the 
agreement that in these subdivisions, full retention is achieved. Back on the 
unit square, it is clear that any events concerning the c(k) can be measured ~ n ;  E 

at the level of the G (k)" in certain cases we will not even make any nota- 
tional distinctions. 

We are now ready for our discussion of the k-scale surface tensions in 
the high-temperature regimes. 

T h e o r e m  2.4. Under the explicit condition of Theorem 2.3, namely 

? > ' P c ( Q ) -  [1 - ( 1  __ /].) 1/2"]4 

1 - f l  - ( 1  - - 2 )  I/2 ] 1 
and Q/> Q~ 

(which includes but is not limited to the entire gel phase) the surface 
tension 0~*(p, Q, fl) is zero. 

822~79/I-2-10 
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Proof. By the arguments of Theorem 2.3, the lower bound on p effec- 
tively allows us to devote all of our attention to the aerogel model at 
p >/pc(Q). Let us therefore examine these systems on 7/2 with only k scales 
of disorder. 

Consider a 2N"x  N" lattice housing two independent disorder realiza- 
tions H~ k~ and HI kr alongside one another. Let tatklt , ,  v2,,~e,  Q) denote the prob- 
ability that the configurations t H  ~k) HI k)') have a left-right .-connected 
crossing of this 2 x 1 rectangle composed of occupied gel sites. We claim that 
if Q >~ Qc and p >~pc(Q), then O tklt, , ,  Q) >I 1 - e-~'kN" for some 7k > 0. 2 ,  n ~ / "  

Indeed, by standard 2d rescaling arguments that go back to ref. 1, if 
for some no, r~tkl exceeds, e.g. 15/16, then the preceding can be established ~ 2 ,  n 

with 7k>~const. N-"~ On the other hand, suppose that O tk3 gets very 2 ,  n 

small. This of course implies that the complementary event, an "easy" way 
connected crossing of the 2N"x  N" lattice by vacant squares, gets very 
close to one. Using the arguments of ref. 4, Lemma 2.6 (or ref. 6, Proposi- 
tion 2.1), it can be shown that with the help of some larger-scale vacant 
pores, these short way crossings can be pasted together to achieve long way 
crossings of yet larger 2 x 1 rectangles with high probability. (Say, larger 
than 15/16.) Once this has been achieved, further "old-style" rescalings 
send the probability of vacant crossings of even larger boxes to one 
exponentially fast. This in turn implies that O,(p ,  Q)--* O, which is not 
considered sporting if p >/pc(Q). 

Thus, the only remaining alternative to the claim is that the 
Otk]C" Q) are uniformly bounded away from 1 and 0. We will show that 2,  n , , v ,  

these circumstances lead to essentially the same scenario as the second 
case, in particular, they will allow us to find a ~c > k such that Ot2r'2(p, Q) 
is again very small. 

To this end, let us discuss a relevant notion of disjoint crossings for 
multiscale percolation. Consider the tilings of the 2N"x  N"  lattice by the 
N k x  N k blocks that represent the largest potential scale of vacancy. We 
will say that two distinct .-connected gel paths are k-scale disjoint if the set 
of N k x N k blocks visited by these paths are disjoint. We will say that there 
are m k-scale disjoint paths if there are m distinct paths, each pair of which 
is k-scale disjoint. 

A careful reading of the van den Berg-Kesten inequality (2) lets us 
know that the probability of more than m k-scale disjoint gel paths con- 
necting the left and right sides of the rectangle is bounded above by 
[o tk] (  n, Q)]" .  (This estimate can also be obtained inductively by condi- 2,  n Y 

tioning to the lowest connected cluster of N k x  N k blocks which contain 
the first m--1  k-scale disjoint paths.) Letting e e R  + and assuming that 
o E k ] t  n 2.. ,e,  Q) is uniformly bounded away from one, then for m large enough, 
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-~ Indicates (microscopic) .-connected 
crossing by gel sites 

Fig. 2. A construction of ~e-~L). 

for all n, there are fewer than m k-scale disjoint gel crossings of  the 
2 N " x  N n lattice with probability exceeding 1 - �89 

Under  the condition that there are fewer than m k-scale disjoint 
crossings, it is clear that  there can be no more than m k  disjoint crossings 
at the microscopic level. This means that there is a set of  no more than k m  

gel sites which, if removed would destroy the event of  a left-right gel cross- 
ing. By incorporating the action of  scales larger than N k, we have the 
power to do just that. Indeed, conditioning to any particular set of fewer 
than k m  vulnerable sites (these collections must, of  course, be ordered in 
some fashion so as to form a disjoint partit ion) and using scales up to N ~, 
we find that the crossing is destroyed with probability exceeding 
(1 - Q~-I~)km.5 In the preceding, we have tacitly assumed that n ~> Tc and we 
have used the H a r r i s - F K G  inequality. Thus, for Tc and n large enough, we 
have demonstrated [under  the assumption that Otk3(-,  Q) is uniformly 2, n / "  

bounded away from 1] that O t~]r,, Q) is small. This, in turn, starts a 2 ,  n ~ Y ~  

chain of  events, the ultimate conclusion of  which is the falsehood t ha t  

P < p a ( Q ) .  Our  claim is now established. 
Let ~ L )  denote the set of  configurations H(~ ) in which there is a left- 

right crossing of An by gel sites that starts and ends within a distance L of  
the midline. With t he  "stated claim" in hand, on the basis of  Fig. 2 (and 

5 The authors regard this argument as a model of inefficiency. In principle under the above 
stated condition, it should be possible to prove that the removal of only m blocks of size as 
big as N k x N k destroys the event of a crossing. Since the above removal procedure employs 
blocks of vacancy starting at this scale, one should be able to obtain the improved estimate 
of (1 -Qr,-k),, for the probability of destroying the crossing using k ' - k  additional scales. 
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the Harr i s -FKG inequality) it is not hard to see that for L large and C 
some fixed finite constant, 

Probp, Q(~e-~L)) >/1 -- Ce -ykL (2.7) 

holds uniformly in n. For any configuration in .,r(L) it is clear that the Y n  , 

surface tension is not larger than 2Lfl/N". In those configurations where 
the event fails, we may estimate the surface tension by its uniform system 
value, tr(fl). Thus we arrive at 

E(Sa~k]) ~< 2L_~fl + Ce-"~La(fl) (2.8) 
1 u  

Letting n then L, go to infinity, we get ct~k 3 = 0 for all k. This is the desired 
result. I 

This concludes our analysis of the high-temperature phase. In cases 
where the surface tension is positive, the analysis requires a more sustained 
effort. 

2.2. Results for the Low-Temperature Phase 

In the remainder of this paper, our principal results will concern the 
region of the phase diagram Q ~< Qc, 0 ~<p ~< 1. Since we are now trying to 
establish results that favor the collective action in the pore spaces, it 
follows that the worst case scenario is when p--- 1. (This is not nearly as 
drastic as it seems, even in the presence of an underlying spin system, p = 1 
is only slightly different from the case p = Q.) Thus, the key condition is 
Q ~< Qc and, as will become apparent, here the physics is determined by 
pore events on large scales. 

The focus of this subsection will be a demonstration that for Q < Qc, 
even the surface physics is (by and large) unaffected by the disorder. In 
particular, if the uniform system is in the low-temperature phase, not only 
are the ~'s positive, but they are both equal to the surface tension of the 
uniform system. Ultimately, this result will be established for all the q-state 
random cluster models with q >/1. However, for q > 1, there are spurious 
complications associated with the distinctive types of boundary conditions. 
The authors feel that the percolation case (q---1) captures the essential 
spirit of the argument--and is complicated enough in its own right. There- 
fore, in this section we will confine attention to this case and deal with the 
full blown random cluster problem in Appendix B. 

In ref. 6, a correlation length N k~ was defined by looking at the 
configurations (Ak, A'k) on [0, 2] • [0, 1] and finding the smallest k, ko for 
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which a left-right connected "crack" of vacant squares appeared with prob- 
ability exceeding some threshold value. For Q < Qc, the above-described ko 
is finite and, on this basis, it follows rather easily that for the configurations 
(~tk) G~)') with k>ko, such cracks occur with probability at least as v m 

large as 1 - e x p { - c o n s t  .Nm/Nk~ These cracks will be instrumental in 
establishing our principal result of this subsection 

Let us briefly outline the motivation and strategy of the forthcoming: 
Clearly, when a crack separates the two relevant sides of a box, the 
"surface tension" is positive. Indeed, if a crack appears in the m th iteration 
and we measure the surface tension on the 2 x 1 square, the probability of 
a dual path between the left and the right is less than the probability 
that there is a path across this crack. If n = m + f, this in turn is bounded 
above by the order of e - 'N' .  Thus we can already state, informally, that 
the surface tension is larger than (1/N')a with probability exceeding 
1 - e x p { - c o n s t .  Nm}. Unfortunately, this probability is not exponentially 
close to unity with the scale of the system--here N" and it is conceivable 
that smaller surface tensions (occurring in other disorder configurations) 
could dominate the overall process. Thus, if we keep m fixed, the proba- 
bilistic estimate is not sharp enough and if we allow m ~ ~ with n, our 
estimate on the surface tension deteriorates completely. 

To circumvent these difficulties, we will use the above described crack 
events on small scales to create a network of cracks. We will refer to these 
as fissures. (Although these fissures may be considered small relative to the 
scale of the full system, they will still be appreciable with respect to the 
scale of the lattice spacing.) The fissures alone will be enough to guarantee 
the positivity of the surface tension throughout the low-temperature phase 
and the argument is presented as a separate proposition (Proposition 2.5). 
Having achieved this, there will be some further discussion in which we will 
describe how to bring to bear cracks on successive scales. The combination 
of the crack events on all scales is then shown to drive the surface tension 
to its uniform-system value; this is the subject of Theorem 2.6. 

Proposition 2.5. Consider the percolation (q = 1) random cluster 
aerogel with the bond parameter 1 - e  -p, in excess of the (uniform 
7/E-bond) percolation threshold and with Q<Qc. Then for any p, 
~(p, Q, fl) > O. 

Proof. Ol~viously it is sufficient to discuss only the case p =  1. 
Consider the configurations (A,,, A ' )  on [0, 2] x [0, 1 ] and let ko denote 
the smallest integer for which the probability of a connected vacant crossing 
(crack) between x = 0  and x = 2  exceeds, e.g., 1 - ( 2 5 e )  -1. Let r>ko and 
let m denote a fixed integer that is large compared with r, the precise value 
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Fig. 3. The event F,,.,. 

of which will be determined later. Let F,,, r denote the set of configura- 
tions (G~ ~, G~ >') on [0, 2] x [0, 1] in which all of the following cracks 
separating the various sides appear: 

(i) a top-bottom connected crossing of vacant 
squares restricted to the region [ 1, 2] x [0, 1 ] 

(ii) a top-bottom connected crossing of vacant 
squares restricted to the region I-0, 1 ] x [0, 1 ] (2.9) 

(iii) a left-right connected crossing of vacant 
squares 

The event F,,., is depicted in Fig. 3. Using the arguments of the type 
found in ref. 6, (cf. Theorem 3.5 and its proof), it is not hard to show that 

Prob(Fm, r) >/1 - cl exp( --Cz N(m-k~ (2.1o) 

with c~ and c 2 finite constants. Indeed, these are just the usual percolation 
rescaling lemmas. 

Next, in the 2 x 1 square, let us examine the random cluster configura- 
tions after an additional E iterations, performed with full retention, i.e., the 
configurations ( G~)e, Or>' G,,,.e). For the benefit of the dual random cluster 
configurations, we will assume that there are free boundary conditions on 
I-0, 2] x [0, 1 ]; however, we will also assume that a~ is large compared 
with unity. As will become apparent, the latter represents a significant 
driving force. Let us now see what happens if, during the r iterations, (the 
analog of) the event Fro, r occurs. In particular, under these circumstances, 
we consider the probability of observing any of the following dual random 
cluster connections: 
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(i) a path connecting any dual site on the midline 
(xl = 1) to one on the right (xl = 2) 

(ii) a path connecting any dual site on the midline 
(xl = 1) to one on the left (xt = 0 )  (2.11) 

(iii) a path connecting any dual site on the top 
(x2 = 1) to one on the bot tom (x2 = 0) 

An illustration of a similar event defined under slightly different 
circumstances can be found in Fig. 5, Appendix B. 

Given that the event "F,,. r" has occurred, any of the paths described 
in Eq. (2.11) must make a run across their counterpart cracks described in 
Eq. (2.9). Now these cracks are at least as wide across as N: lattice 
spacings. For percolation, it is easy to show that the probability of any of 
the above-mentioned paths does not exceed 2(N " +  r e -O~ ,  where tr > 0 
is the usual surface tension for Bernoulli percolation (i.e. a is the inverse of 
the correlation length for the dual connectivity function). 

Let n be large compared with m and let us only consider the disorder 
configurations ~(r) We will now estimate the probability of observing a ~ n ;  t '  

path across A,  +: by dual bonds and gel sites. For convenience, we divide 
A,,+: into square pieces of side N m+: lattice spacings. To each path, we 
associate a connected cluster of nonoverlapping 2 • 1 rectangles (each rec- 
tangle consisting of two of the above squares) by the following construc- 
tion: We say that a rectangle has been threaded by the path .if the path 
traverses the rectangle in any of the ways described in Eq. (2.11). Our 
cluster will be a collection of rectangles threaded by the path. Let us track 
the path starting from the right side of A,+:.  Hopefully, the path starts off 
by threading a rectangle whose long side coincides with the boundary of 
An+ :. In this case, the said rectangle is the first to join the cluster. On the 
other hand, it may be the case that the path simply plows through the first 
box it encounters, in which case we will define the first rectangle of the 
cluster to be this box together with the one directly above it. (These two 
possible scenarios are depicted in Fig. 4A.) Moving along the path, let us 
say that we have determined the first few rectangles of the cluster. We con- 
struct the "boundary" of the existing cluster out of our squares of side 
N " + e  using the usual notions of Z 2 connectivity: Here we regard the 
cluster as a .-connected object in 7/2 so that its boundary will end up being 
connected. (The "sites" of this 7/2 are squares of side N "  +:.) The boundary 
consists of thosd squares not in the cluster but sharing an edge or a comer 
with a square that is. The external boundary is the (edge) connected com- 
ponent that can be reached from infinity without touching the cluster and 
the boundary is the intersection of this object with the collection of squares 
that constitute A,+ e. The next rectangle to join the cluster is, hopefully, 
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the first 2 x 1 rectangle in the boundary to be threaded by the path. 
However, there is again the possibility that the path will cross the bound- 
ary in the confmes of a single square. In this case we will (artificially) 
adjoin this square to one of its neighbors in the boundary using some 
deterministic rule, for example N > S > E >  W. It is noted that the j t h  and 
( j +  1)th rectangles to join the cluster need not share a side (or even a 
comer) in common. A few steps of this procedure are illustrated in Fig. 4B. 
Observe that with each additional rectangle, the "furthest leftward" 
progress of the duster is increased by no more than the short length 
(N m + :) of the constituent rectangles. We stop the process when the cluster 
first touches the left side of A,+: and say that such a cluster has spanned 
a,+e. 

Let ~ denote a generic spanning cluster that might have been con- 
structed in the fashion just described. In what is to follow, we do not dis- 
tinguish geometrically identical clusters, i.e., clusters that were pieced 
together in a different order. We will consider the equivalence class of all 
dual paths crossing A,+: giving rise to the cluster (g. By slight abuse of 
notation, we will also use Prob(Cg) to denote the probability (in the con- 
figuration ~(r) or A, + :) of observing any of the paths in the ~ equivalence ~ n ;  r 

class. It is clear that 

e-S'+'N"+' <<. ~ Prob(Cg) (2.12) 
e~: ~, s p a n s  An+: 

It is further clear that the probability of ~ is less than the product of the 
probabilities of observing the individual threading events in the constituent 
rectangles. We may now examine each rectangle and determine whether 
(the appropriate translations and/or rotations of) the event Fm.r occurs 
in the configuration tr,;"(r)e. If not, we will estimate the probability from 
above by unity and otherwise, we obtain a (multiplicative) factor of 
2(N"  +:)2 e-,N:. 

I N U l I K I N  
I I W I i l l  
l i l l p m l  ii  
.qqllkmi . 
l l m m i l i  
i l i m i l l  

Dual path Dual path 

Fig. 4. 
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Recall that the probability of F,,, r is close to unity--at  least if m is 
large; for notational simplicity, let us denote our estimate of this probabil- 
ity by 1 - e  (i.e., e = c ,  exp[c2N('-k~ Thus, a typical cluster cg that 
consists of Kgl rectangles has only e 141 threading factors that need to be 
estimated by unity. However, we will end up allowing for a lot more 
leeway. Let f e  (e, 1). In a configuration a(r) we will say that a spanning V n ;  g ,  

cluster c~ is f-normal if a fraction at least as large as 1 - f  of its rectangles 
experience the analog of the Fro. r event. It is noted that the "normalcy" 
of a given cluster may be computed using binomial statistics since, due to 
the cutoff after r + : < m  + : scales, the disorder configurations in the 
individual rectangles are independent. 

As a final step, we will say that the configuration ~,:"~r): is f-normal (or 
that A, +: is f-normal) if all possible clusters that span A,  +: are f-normal. 
It is easy to estimate 

Prob( Gt.~ is not f-normal) ~< ~ 2'~ele :l~el 

= y. J r (K)  2xe fx (2.13) 
K 

where A:(K) is the number of spanning clusters with exactly K constituent 
rectangles. The quantity A:(K) can be estimated by the usual sort of 
polymer arguments: In particular, if we define .AT(K) to be the number of 
distinct clusters of this type modulo translation, it is not hard to show that 
[.AT(K)] ~/r tends to a definite limit, e w and that this is also the limit of 
[Jff(K)]  l/K. Thus one need only verify that w is finite. This can be accom- 
plished in any number of ways. For example, since a neighboring pair of 
rectangles can only coordinate in 16 possible ways, it follows that .AT(K) is 
less than the number of distinct random walks of length 2K and coordina- 
tion number 16, i.e., (16) 2K. The minimum value of K is clearly 
(N"/N =) - 1 and there are also exactly this many "starting positions". Thus 
if ef(=-cl exp[--fc2N(m-k~ is sufficiently small, A,,+: is f-norma'l with 
probability exponentially close to one in the (linear) scale, N "+:. 

In the event that A,, + e is not f-normal, we will estimate e-S"* ,u.+, by 
unity; however, if A,, +: is f-normal, we have, from Eq. (2.12), 

(e-S"§ l A . . :  is f-normal) <<. y. 
K ~ N n / N  m 

.Ar(K)[ [ 2N2(m+e)] e-qNt](l-  f) K 

(2.14) 

Now to set the constants. First let H be large enough to ensure that 
2:'c~ e -c2u is less than one; to be definitive, say that (for all K sufficiently 
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large) 2A/'(K)l/Kcle-C21~<<.e-I. NOW find the m > k o  that maximizes 
( 1 - - H / N  ~m-k~ N -m and set f = H / N  I''-k~ The quantity f is yet to be 
determined, but let us keep in mind, for the moment, only the fact that it 
is finite. We see that in a fraction smaller than e -u"/N" of the configura- 
tions, A,,+t may not be f-normal. In these configurations, we must estimate 
e -s"+'u"+" (and h e n c e  e -(I/R)S"+eN"+e) by one. In the rest of the configura- 
tions, whose probability we may estimate by unity, we get the estimate of 

(e-S"+'u""lA, ,+e is f-normal) 

~< [ (e~2N2(,, +e))~l-f)] N,/~r e-a(I - - f ) N - r a N  n+t (2.15) 

Hence, we may choose larger and larger values of d to dispense 
with the bothersome prefactors. The result, for R--+ oo, is that 

>~ [ 1 - r/({')] a( 1 - f ) / N  m with q(d) --+ 0 as t" --+ oo. Hence we have shown 

0c >~ a((fl) ~ , , f >  0 (2.16) 

for 1 - e - a  above the 2d bond percolation threshold. I 

Thus far, we have only used a single scale of fissures; the next step is 
to bring in cracks and fissures on all scales. It turns out that it is necessary 
to do this on two tiers, one for the surface tension itself and the other for 
the "percentage of fissures" i.e., the quantity 1 - f  The following objects 
will be used in the forthcoming: 

Definit ion. Let (mk)  , (rk) and (Ek) denote increasing sequences of 
integers with mk>rk .  We consider the events F,,k. rk(Wk, fk) which are 
defined as the set of configurations (G~,,~, *), G,,,,trkl') in [0, 2] • [0, 1 ] such that 
for all • >~ Ek, the probability in (G ~rk> ~t,.k)' ~ of observing any of the x-- ink;  r ~ t n k ;  Ski 

dual paths described in Eq. (2. I 1 ) is smaller than e x p ( -  wkN "~+ e,). If/z is 
any number for which e ~'- l > 2e ~ (the 2 is a safety factor), then, for con- 
venience, we will denote the probability of Fmk.~k(wk, ~k) by 1 - e  -~'/yk 

The quantities m, r (and f )  that were used in Proposition 2.5 will be 
the starting point for all these sequences. We will denote these quantities by 
m o, r o and fo. Any starting value for s will suffice provided that it is large 
compared with a-~. 

Following the analysis of Proposition 2.5, if the event F,,,,.~k(wk, Ej,.) 
occurs with probability exceeding 1 -e-~'/fk, one can prove that in lattices 
A,,+e (with E large and n ~ ~ )  the surface tension is (essentially) at least 
as large as (1 - f k )  w~ with probability tending to one exponentially fast in 
N". However, more than this can be achieved: It should be noted that in 
the course of the proof of Proposition 2.5, no explicit use was made of the 
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fact that the crossing path was between the midpoints of the sides of a 
square. In particular, the argument holds for any path that is forced to 
cross any fixed polygonal shape of scale L. [ Of course a slightly different 
meaning will have to be assigned to the words Jt/'(K), but the asymptotics 
of the appropriate "Yd(K)" will always be the same.] Hence, we can run 
the same argument looking for one of three types of crossings on a 2 x 1 
rectangle. The result is: 

Corollary (to Proposition 2.5). Let Fmk, rk(Wk, Vfk) be as 
described above. Then for any number fk > O, it is possible to find an 
rh k > 0 and an ~ such that with probability larger than 1 - e x p  (--p/fk) ,  
the event 

Fa, k. r,((1 --fk)[ 1 - r/(fk) ] Wk~k) 

occurs, with r/(~ k) --, 0 as ~ --* ~ .  
Thus we sacrifice surface tension for a probabilistic estimate. We 

could, of course, use more than just the "small" F,,k, rk(Wk, s events when 
we go to the larger scale: Indeed, these small fissures may be combined 
with a large-scale crack [i.e., F,~0.,0(wo, Eo) ] which would give us an 
improved surface tension. However, we then reduce the probability factor.. 
back to the level of fo and, as it turns out, this cycle will never push the 
bound on the surface tension past the order of a/N k~ The latter may or 
may not be regarded as a substantial improvement over the results of 
Proposition 2.5, but in any case, the conclusion is far from optimal. To 
break the cycle, we must use a combination of events with and without the 
large-scale cracks when we perform the "probabilistic" stage of the rescal- 
ing. This will allow us to keep the surface tension very near its improved 
value as we drive the probability up to unity. Keeping these ideas in mind, 
we are ready for the following result: 

Theorem 2.6. Consider the percolation/aerogel system with bond 
parameter 1 - e  -p  in excess of the percolation threshold and let a(fl) 
denote the surface tension of the percolation system. Then, for any Q < Qc, 
o~(p, Q, fl) = a(fl) for all p ~ [0, 1 ]. 

Proof. Let (fk) denote a decreasing sequence with fk>~O and 
l i m k - ~  fk = 0. We will take fo = f  from Proposition 2.5. For integers mk, 
rk, El,- (with mk~rk)  and numbers wk~<tr, let Fmk, rk(Wk, ~k) denote the 
above-described events. Then we claim that there are sequences (mk), (rk), 
(Ek) and (wk) such that with probability exceeding 1 - e  -~'/1k the events 
Fmk. r~(Wk, ~k) occur and that for these (Wk), limk_ ~ Wk = a. 

We are in good shape if k = 0. Suppose then that an F,,k. ~k(Wk, Ek) has 
been produced with a probability that exceeds 1 - e  -~'/~. Let fk+~ be 
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specified and let dk be some small number which, to be definite, we will 
assume satisfies dk <~fk" Finally, let n k >> m k and Ck+l> s denote integers, 
the precise values of which will be specified later. First, we will consider the 
2 x 1 rectangular lattices of scale N "k+ ~**,; however, we will only look at 
the configurations t~C~k) ~O'k)' ~ Using the 2 x 1 rectangles of side 

\ V / I k ,  Ek+ I , ~ " l t l k ; E k + l , "  

N "k, most of which contain various versions of the event Fmk. rk(W k, ~ ) ,  
we get, according to the Corollary to Proposition 2.5, the event 
F,,,. rk( ( 1 -- rl )( 1 --  f k )w k, fk + t ) with probability tending to one exponentially 
fast in the lattice size, where t /=  r/(t" k + i ) ~ 0 as •k + ~ ~ oO. Let n k be chosen 
large enough so that this probability exceeds 1 -  e -''/ak. So far, nothing 
beyond Proposition 2.5 has been achieved; however, along the way, we 
proceeded by establishing fk-normalcy for the configurations t G ~k) Gl'k)'~ 

- - i i  k , - -  t l  k i "  

, Gr is [Recall the definitions from Proposition 2.5: a configuration (GI,', *) --"k " 
f , -normal  if all the spanning clusters consisting of 2 • 1 rectangles of scale 
N "k have a fraction at least as large as 1 - f ,  of their constituents in which 
the analog of the event Fmk. , , (Wk,  Ek) Occurs. In this context, a "spanning 
cluster" of the 2 N m k •  N ''k lattice means from the top to the bottom or 
from the left side to the midline or from the right side to the midline. ] Now 
let us consider the consequences in the 2N ~* • N "k lattice if the configura- 
tion is both fk-normal  and (the original) event Fm, r [which, of course, 
implies the event Fm0,~o(W0, Eo)] occurs. Observe first and foremost that 
because nk >> me  > r , ,  the two events are disjoint. Indeed, on the unit scale, 
F~, r uses blocks of vacancy of scale larger than N - m  while fk-normalcy is 
measured on CG ~r*) ~r,)' '--,,k ' G~, ) and therefore only uses blocks of scale smaller 
than N -r Let us condition on the existence of some particular 
obstructing crack contributing to the event Fm.~. (Of course, the cracks 
must be ordered in some fashion so as to obtain a disjoint partition of the 
event F,,. ~. As we will seen the particulars of the crack do not enter into 
the argument.) Now let us suppose that on the lattice A,,, + r, +,w A',k + e, +,, 
there is dual crossing of the type described in Eq. (2.11 ). As usual, we track 
the path into its connected cluster of 2 x 1 rectangles of side N "*+ tk+, lat- 
tice spacings. Any spanning cluster must have a certain minimum number 
of constituents in the crack and it is seen that each of these will contribute 
a factor on the order of e x p ( - a N  ''*+~'k§ to the overall estimate on the 
probability of observing the particular cluster event. To be precise, if a '  < a, 
then for ?k+~ sufficiently large, at least [ ( 1 / N " x N " k - ' k ] - - 2  of the 
rectangles in any spanning cluster may be estimated by the factor 
e x p ( -  a ' N  ''k + e,§ ~). (The --2 is because the first rectangle entering and the 
last rectangle leaving the crack may be half in and half out of the crack.) 
For a particular spanning cluster cg, with I~] = K, let us say that a fraction 
s has "fallen into the crack." Assuming the worst case scenario, of the 
remaining ( 1 - s ) K  rectangles, in at least ( 1 - - s - - f k ) K  of the cases, the 
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analog of the event Fro,, rk(Wk, dk) Occurs. Hence these will contribute a net 
decay factor of [ exp( - w k N " k  + :k  § ~) ] [ 1 - , - f k l K .  Overall, we get 

Prob (cg ] A., + :, +, w A '., + :~ +, is fk-normal n F,.. k) 

~< exp{ - -  K N m k +  ~gk+ ' [  O"~ + Wk(1 -- S - - fk ) ]  } 

<~exp( + a ' N ' k + : k + ' ) e x p  ( tT' W---W-k Nm'+rk+'~ 
N m ] 

x exp[ - - (Wk N"k+ek+~) K(1 - - f k ) ]  (2.17) 

Summing over all K, it is seen that under the condition in Eq. (2.17), we 
have achieved the event F.,, ~(w*, g'k +1) where 

I O I __ W k ] 
w*>~ ~ - I - W k ( 1 - - A )  ( l - q )  (2.18) 

with r/-~ 0 and a '  --* a as g'k + ~ -~ o0. 
We remind the reader that the above mentioned F,,. r(w*, :k+ 1) was 

produced as a subset of the intersection of two disjoint events. In par- 
ticular, these are (i) the old Fro, ~, which occurs with probability exceeding 
1 - e  -~'/:~ and (ii) the fact that ,,-.ira (~k) ~,.~,~ , G,,, ) isfk-normal,  which occurs with 
probability exceeding 1 -e-/ ' /dk.  Let us temporarily denote this latter event 
[which, we recall, implies F, , , .~ , ( (1 - - r l ) (1 - - f k ) (Wk) ,dk+l )  ] by F,,k.r," 
Notice that in order to achieve the estimates in Eqs. (2.17) and (2.18) we 
have used an enormous range of scales. Indeed, setting the unit scale at 
N :~§ (so as not to count the :k+ 1 "artificial" subdivisions), we are working 
with a total of n k -  r different sizes of vacancies. We are now ready for the 
final step. 

Let mk +1 >> Ilk and define r k +1 = I l k -  r. On the (huge) 2 N  "k + I x  N m* + ' 
lattice, consider the preceding sorts of subdivisions into 2 • 1 rectangles of 
scale N "k which, in turn, form spanning clusters, etc. A configuration 

f2(rk+ I) (rk+l)' ~'"k+~ ' Gmk+~ ) will be called fo o dk-normal if in each spanning cluster if, 
a fraction at least as large as 1 - f o  of the constituent rectangles enjoy the 
analog of the event F~. r and a faction at least as large as 1 - d k  of them 
enjoy the analog of the event F,,. r,- According to our routine estimates, the 
probability offo o dk-normalcy tends to unity exponentially fast in the scale 
of the huge lattice, N mk+j. Let us choose m ,+  1 large enough so that this 
probability exceeds 1--e-~'/fk+k We will now estimate the surface tension 
under the condition that ~mk+l(~r(rk+l)' Grnk+l(rk+O' isfo o dk-normal. In the worst case 
scenario, each cluster cg with [:all = K ,  has at least ( 1 - f o - d k ) K  of the 
constituent rectangles that experience both events, f o K  getting the event 
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F,,.rk alone, and d k K  that get nothing at all. As discussed earlier, the 
former event implies the analog of the event F,,k.r(W*, ~k+ 1) in these 
rectangles, and hence a total contribution to the decay of 
e x p [ - - ( w * N " * + t k + ' ) ( 1 - - f o - - d k ) ] .  The latter will give us an additional 
factor of e x p { - - ( 1 - - r l ) [ W k ( 1 - - f k ) ] N " k + t k + ' f o K  }. Summing over all K 
(and following through with the final few steps of Proposition 2.5) gives us 
our ( k+  1)th estimate on the surface tension, Wk+l: 

Wk+ , >>. (1 -- r/)[ (1 - - fo  -- dk) w* +fo(1 -- fk)(1 - r/) Wk] 

= [ I  - ,7 ( t , ) ]  [ 1 -,7(tk +, ) ]  

x[ (1-fk)(1-dk)wk+(1-f~ N" jj (2.19) 

where r/(/k) ---, 0 and a' ---, a if we let dk ~ ~ .  Under these circumstances, it 
is not difficult to see that the sequence, (Wk), converges to a(fl) and, at last, 
the proof is complete. I 

Corol lary  ( to Theorem 2.6). Under the conditions of Theorem 2.6, 

l i ra ~ ]  = ~(/~) 
k ~ o o  

Proof. Following the discussion in the Corollary to Proposition 2.5, 
it is seen that the quantities Wk(l--fk)[1--r/(~k+l) ] actually provide a 
lower bound on the surface tensions Ct~r k + ek+ J l" The desired result therefore 
follows From the above analysis. I 

The statement of Theorem 2.7 is almost identical to that of Theorem 
2.6 except with regard to the identification of the transition temperature in 
the uniform system. At the beginning of Appendix B is a finite-size scaling 
criterion for low-temperature behavior and a definition of a transition tem- 
perature fl,-~. Although at present there is no proof that this definition 
coincides with the usual definition of the transition temperature--except 
for percolation--it is difficult to believe that this is not the case. (Most 
likely, a proof could be provided for q = 2 and integer q >> 1 with currently 
available techniques.) In any case, it is clear that some transition occurs at 
fl, and that true low-temperature behavior only occurs if fl >fl, .  Hence, 
modulo a precise definition of this quantity, we may state the following 
result. 

Theorem 2.7. Consider the q-state random cluster aerogel systems 
with q >~ 1, Q < Qc, and bond density parameter 1 - e-P. If fl exceeds fl, 
[defined in Eq. (B.1)] then for all p e  [0, 1], we have a = a *  =a(f l )  where 
a(fl) is the surface tension for the uniform q-state random cluster system. 
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Concluding Remarks 

The fact of Theorem 2.7, especially in the region p >PG(Qc), leads to 
an interesting and disturbing set of observations. We have at our disposal 
all the quantities aR and 0t~k ]. Now different behavior for the different 
a~k]'S is of course to be expected since these quantities actually pertain to 
different models. Indeed, as we approach the critical curve From the high- 
temperature side, the beginning portion of the sequence will vanish. 
However at least in the region specified in Theorem 2.6, for large k, 
0~k ] ~ O'(fl). The anticipated behavior of the cc R is another story altogether. 
According to the usual scaling pictures, all of the aR's - -as  well as the limit- 
ing a- -should  exhibit qualitatively similar behavior as a phase boundary is 
approached. We will demonstrate that the above fails dramatically as we 
approach the vertical portion of the phase boundary 

In this regard, let us recapitulate that by holding p and fl fixed (at suf- 
ficiently large values) and allowing Q to vary, we get discontinuous 
behavior at Qc for a(Q). We will now show that for any finite R, aR ~ 0 as 
Q T Q~. Recall the discussion of the finite-size scaling length Nk~ This is 
defined by the smallest k 0 such that with some definite probability, of order 
unity, one can observe a pore crossing, the hard way, across a 2 x 1 rec- 
tangle that houses two independent copies of Ako. For convenience, let us 
modify this definition to read "the easy way across"; we may denote the 
corresponding k by TOo .6 A central result in ref. 6 was that as the sol-gel 
phase boundary is approached from the sol side, the quantity ko--and 
hence too--is divergent. Thus at the scale N ~~ practically by definition, 
there is a long-way crossing of the 2 x 1 rectangles with probability larger 
than, say, e -a. Let us turn our attention to A,.  If we just focus on the ~:o 
smallest scales, we will observe a left-right gel crossing inside the strip 
of width N r'~ surrounding the midline with probability larger than 
exp{-2aN"/Nr '~  This connection is hooked up to the midpoints with 
probability that is uniform in n. Finally, it is noted that the band of width 
ko centered around the midline does not lie inside any pores of scale larger 
than N r'~ with probability 

( Qn,/:o_ t )( Q~:~o- 2)(...)(QN). 

6 It is not hard to show that the ratio ko/~Co is uniformly bounded for (p, Q) in any closed sub- 
set of (0, 1 )2. For multiscale percolation problems involving pore events, these sorts of things 
are easily proved, cf. ref. 4, Lemma 6.2. In single-scale problems, the results do not come so 
easily. 
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Putting these facts together, it has just been demonstrated that the surface 
tension is zero with probability larger that exp{ - b N " / N  ~~ for some num- 
ber b that is uniformly bounded. Evidently, for any R, 

E (exp ( -  1 S,,N")) exp \ Nr, O / (2.20) 

so that 0t R ~< bR/N ~~ Hence, all the ~R's tend to zero, which indicates (or 
proves) that this is a genuine critical phenomenon. (In particular, 0tR, for 
finite R appears to have a direct interpertation as a correlation length.) It 
may well be the case that in other portions of the phase diagram, the limit- 
ing surface tension will also exhibit continuous behavior. 

A P P E N D I X  A. STABIL ITY OF THE FREE E N E R G Y  

Recall from our preliminary discussion that the model is confined to 
the unit square and that at the nth stage, this represents a lattice A,,, of 
spacing N - "  consisting of N 2" sites. Of course, with large probability, the 
vast majority of these sites come equipped with spin variables and the vast 
majority of these reside in nearly uniform environments. In this light, it 
is difficult to imagine that any limiting statistical mechanics (i.e., the dis- 
tributional behavior of local observables) could end up differently from 
that which is possible for the corresponding uniform system. We will not 
delve into a formal proof (or worse yet, a formal definition) of the above 
assertion. Instead, we will be content with a proof that the preceding holds 
for all thermodynamic quantities. In particular, for finite n, there is always 
a free energy per site (which is a random variable). Not surprisingly, a 
limiting free energy exists, and is equal to that of the corresponding 
uniform system. This will be the subject of Theorem A.1, which follows 
some preliminary definitions and notation. 

Defini t ions .  Let s denote a generic spin variable which, for sim- 
plicity, we assume takes on values in a compact space. Let da(s) denote the 
single-spin (or a priori) distribution and let us assume that the total size of 
the single-spin space as measured by /1 is finite. Let J ( . ,  �9 ) denote the 
interaction energy function for a pair of spins and let h(s) denote the 
magnetic energy for a single spin. It is assumed that these functions are 
bounded. On the square lattice, the Hamiltonian is defined by the usual 
formal expression: 

H =  ~ J(s,, sj) + y' h(s,) (A.1) 
<i , j )  i 
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where ( i , j )  denotes a nearest neighbor pair. For A c 7/2, let sA denote a 
spin configuration on A. Let OA denote the sites in A c that have a neighbor 
in A. Then, for any fixed configuration of boundary spins SOA, the partition 
function on A, at inverse temperature fl is given by 

~A:P(SoA) = f ~I dp(sj) exp{ --flH(S A, Soa)} 
j e A 

(A.2) 

where H(SA, SOA ) is notation for the finite sum 

H(SA, SOA) = E J(si, sj) + ~ h(s~) + ~ J(s~, sj) (A.3) 
<i,j> inA iEA <i,j> 

i E A , j ~ O A  

If K,  c A,, represents a configuration of pores (not necessarily generated by 
the aerogel process), we will denote by Y'r,;p(saa,) the partition function 
defined as in Eq. (A.2) and (A.3) but with all terms involving any 
j e  C, (= A, \K,)  omitted. Finally, we will denote by ovt +1 the maximum "CAn; fl 
value for the partition function that can be achieved by adjusting the the 
spin configuration on the boundary and by ~rt+Jt+~ the maximum A~; ,6 
partition function that can be obtained on any subset of A.: 

. ~ e [ + ] [  + ]  .~eK," A,,; p = max max , p(soa.). 
Kn $OA n 

We will also use ~.tA~ ~ and ~ t - ] [ - ]  �9 a,:p as notation for similarly defined 
quantities with the word maximum replaced by minimum. 

We are ready to prove Theorem A.1. 

Theorem A.1. Let f(fl) denote the free energy for the 2d spin 
system as defined by the Hamiltonian in Eq. (A.1) and let (C,,) denote a 
random sequence of aerogels generated as described in Section 1, Then for 
any sequence of boundary conditions (saA,) und for all fl, p and Q, 

lim log Y'x. a(soa.) 
, ~  ~ N 2~ - f ( f l )  

with probability one. 

Proof. By'the standard "existence of thermodynamics" arguments, it 
is clear that 

lim log ~ e ~  log ~ ; ~  
. . . .  N2" = .~lim N2,, = f ( f l )  (A.4) 

822/79/I-2-11 
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Furthermore, by the boundedness properties of the Hamiltonian 
mentioned just prior to Eq. (A.I), it is easily seen that 

eFN" ~ "~' [A+ ~ [ +] >-~ 4[--][A,,; # -]/> e-FN" (A.5) 

holds uniformly in n for some finite constant F. For any sequence of 
aerogels ( A . _ , ,  C.) ,  let IA,,_,I denote the number of squares that had 
been considered alive just before the nth step of the process. For any 
boundary condition and any n and m with m > n we may write 

~_~., ;#(SaA.)<~ro'g[+] [+] ' I IA. I  r o~r+] 1N2n--lAnl L"~A.,_.;p J , ~ A  ..... ;pJ (A.6) 

with a corresponding lower bound in which the plusses are replaced by 
minuses. But then 

I~ "~K': a ~< F IA"I ' ( ~ - ~ - ~  + - - ~ ;  ~ l~ ~ '  (A.7) 

along with a similar looking lower bound. Hence, as m--. ~ ,  the right 
hand side of Eq. (A.7) converges to 

F [ ~ I N ~  ] - ( 1 - [ ~ ] ) f ( f l )  

Next, observe that [A,[ is distributed like a branching process with a 
mean of Q N  2 out of a maximum possible N 2 progeny. Therefore we have 
that for any Q < 1, I A , I / N  z" ~ 0 with probability one and thus 

lim log "~rm" 
,,, ~ ,~ N z" "p <~ - - f ( f l )  (A,8a) 

with probability one. Similar considerations show that 

limo ~ log YEK.,. 
_ N 2., 'P>~ - - f ( f l )  (A.8b) 

with probability one. | 

Remark .  We observe that the above proof extends, with almost no 
modifications, to more general systems, including the d-dimensional 
versions of the aerogel process. 
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APPENDIX B. SOME RESULTS ON THE LOW-TEMPERATURE 
PHASE OF THE POTTS MODELS AND A PROOF 
OF THEOREM 2.7 

In this appendix, we provide a proof of Theorem 2.7, namely if Q < Qc 
and the temperature is below the transition temperature of the uniform 
q-state Potts system, then the aerogel system for this fl, Q (and q) has, for 
all p ~ [0, 1 ], the same surface tension as the counterpart uniform system. 
In fact, all of the above stated will be established for the q-valued random 
cluster models with q/> 1. 

Our starting point will be a precise definition of what we mean by the 
low-temperature phase for the uniform system. Since most of this appendix 
will focus on exponential decay of various connectivity (or correlation) 
functions, it is more convenient to work with the dual variables. Thus, the 
low-temperature phase will really be the high-temperature phase for the 
dual model. The reader should be cautioned that the words wired and free 
will therefore be exchanged. To avoid confusion, we will desist from the 
usage of the words "surface tension" until we are ready for the proof of 
Theorem 2.7. However, we will still use a to indicate the corresponding rate 
of decay and we will use 2, as defined just prior to Eq. (1.5"), to denote 
the bond density parameter. 

Definit ion.  Consider the 2L• lattice {(Xl,XE)ET/2IO<~xI<~2L, 
0~<XE~<L } on which is defined a q-valued random cluster model with 
q~> 1 and bond density parameter 2. Let ez denote the random cluster 
probability, in the ensemble with wired boundary conditions, of observing 
a top-bottom crossing of the lattice by open bonds or a crossing from the 
left side (x] =0 )  to the middle (x] = L )  by open bonds or a crossing from 
the middle (Xl = L +  1) to the right side ( x l = 2 L )  by open bonds. [See 
Fig. 5. Notice that this is the exact analog of the event described in (2.11 ).] 
We define 

2 ,=sup{A[ lim eL=O} (B.I) 
L ~ c~.. 

The inverse temperature corresponding to this value of 2 is denoted by fl,. 

~ o o o P " ~ 1 7 6  . . . .  "oo~ ' ' ~ 1 7 6 1 7 6 1 7 6 1 7 6  - ' a ' - ~ 1 7 6  o o o o o o o o o r o o o o o o o~ ~ooo ~ i o o o o o o o! 

~ o o o o o o o o o o o ~,  

~,o o o o  �9 o . . . .  oo', 
b o o o o o o o o �9 o 

~,o o o o  . . . . . .  ~ ,~o . . . . .  o 
~ o | | o �9 o o o o o c,  o 

~ o o o o o o o o , ~  o 
o o o a o o o o o o o o o ~ o 

o o o o o o o o o ~ ' o  o o o o o o o 

~ _  a , o . . o .  9 . o .  ~ .  Q . o . p .  ~ . q .  ~ . ~  . o .  9 . r  N 

Fig.  5. D u a l  p a t h s  c o n t r i b u t i n g  to  eL; 
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Remark. There is no obvious subadditive-type inequality relating the 
quantities eL. This is not due to the composite nature of the event; the 
same remark holds for the ordinary crossing probabilities with these 
boundary conditions. In particular, unlike the quantity a - -which  the 
reader will recall is here defined with free boundary condit ions--our wired 
boundary conditions completely disrupt all the standard procedures. 
Nevertheless, the following can be established: 

L e m m a  B.1. The limit 

e - ~  lim (eL) I/L 
L ~ o o  

exists. In, particular, 2 < 2, if and only if 6 is positive. 

Proof. Most of the above sentence is a direct consequence of the 
forthcoming finite-size scaling argument: We claim that there is an e > 0 
such that if for any Lo, eL0<e, then l i m t _  ~, e L = 0  and, in particular, 
limsupL_ oo (eL) I/L< 1. (And, in fact, is of the order of e-l/L~ 

The claim is established using an argument, that is little more than a 
recapitulation of Proposition 2.5; however, the derivation is considerably 
simpler because we are dealing with a uniform system. Suppose that ez.0 < e 
with e a number to be specified later. Let L >> Lo and consider the event of 
one of the crossings described in the definition of eL. For simplicity, let us 
assume that L is a multiple of L o (otherwise, we will just cut down on the 
size of the lattice). As in the proof of Proposition 2.5, we may track a path 
according to which 2Lo x Lo rectangles on a grid of scale L o are threaded 
by the path. Further, we partition the event in question according to which 
(unordered) cluster is the one threaded. As a result, we get 

eL-%< ~ A / ' ( K ) ( e j  K (B.2) 
K > L /Lo  

where, as in Proposition 2.5 and Theorem 2.6, we are a little loose with the 
definition of JV(K); we agree that it stands for the number of appropriate 
spanning clusters of size K and that the K---, co limit of [N(K)]  ~/K e% 
exists and is finite. It is evident that if e is any number that is smaller than 
this limit, then the limit of eL is zero. Under these circumstances, if L2 >> L, 
with Ll sufficiently large we can also write 

(ez.2) ILL,. <~ const �9 e ~') VL,. (eL,)l/L, (B.3) 

where m' is any number larger than w. Equation (B.2) allows us to estab- 
lish the existence of e - ~  _ limL ~ ~o (eL) VL with 5 ~> 0. 
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Thus, i f2  < 2, (so that eL ~ 0) we have demonstrated that ff exists and 
is positive. Conversely, if ff > 0 exists, we have a priori that 2 ~< 2 ,  But then, 
for some large L, eL is still smaller than E even at a slightly larger value 
of the bond density parameter. This shows that the 2 in question must have 
been strictly smaller than 2,. Evidently, at ;t,, eL > e for all L and here we 
may state that ~ is zero. | 

Corollary. If 2 < 2 ,  the phase is unique 

Proof. Let VL denote the boxes of side L centered at the origin, let 
L'~> L, and consider the free and wired measures of VL,. Since the restric- 
tion to V/_ of any limiting measure lies between these two (in the sense of 
FKQ), it is sufficient to show that as L' ~ 0% the restriction of these two 
measures merges. 

Now if 2 < 2,, it is not difficult to show that, even with wired condi- 
tions on VL,, the probability of a connection between O V z and VL, tends 
to zero at (approximately) the rate of e -a(L ' -L) .  In the absence of such a 
connection, the wired measure on VL, is FKG subdominant to the free one. 
(This is because the lack of connection can be represented by the presence 
of a circuit of "dual" bonds separating O VL, from VL which, in turn, is 
equivalent to free boundary conditions closer to VL than O VL,.) From this, 
uniqueness can be easily established. Furthermore, for integer q >12, this 
easily translates into uniqueness for the corresponding (high-temperature) 
spin system. I 

Rornark. The proof of Theorem 2.7 would be considerably simpler if 
it were possible to establish that ~ =  a. In this case, we could essentially 
plug into the proof of Theorem 2.6. Unfortunately, we believe that in 
general this is not the case. (Although it certainly holds for percolation and 
possibly the Ising magnet.) Indeed, it is conceivable that in a half-space 
q-state system with wired boundary conditions there is a surface layer 
where the appearance of the system is quite different from that of the bulk 
phase. This, in the language of the FK representation, could result in a 
"pinning" of a path with a corresponding lowering of the associated rate of 
decay. Under such circumstances, wired boxes may be crossed by paths 
that "creep along the boundary" and the probability of these crossings will 
then go to zero at a rate constant which is slower than that provided by 
the bulk. Thus, even for the analysis of the uniform system, we will have 
to develop a box-crossing technology where the paths are forced to stay 
away from the boundaries 

On a happier note, at least the bulk correlation length can be 
identified with the quantity a-1. Although this result is fairly well known, 
we will provide a proof for the sake of completeness. 
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We begin by defining Gx, y to be the probability in the (unique) infinite 
volume state that the points x and y belong to the same connected cluster. 
We will use the notation m for the limit 

1 
m -- ~ log Go, (o, L) (B.4) 

It is clear that a/> m ( >/5); we now prove the following result. 

L e m m a  B . 2 .  For 2 < 2 .  m = a. 

Proof. Let Tx, y denote the event that x is in the connected compo- 
nent of y and recall the lattices V L defined by {x[ [xl [, [x2[ ~L/2}.  It is 
assumed, for simplicity, that L is even. If x and y are in VL we will denote 
the probability of Tx y with free boundary conditions on VL by a~f~" the �9 ~ x , y ,  

L-dependence will be clear from context. 
In this language, the quantity a is given by 

1 1 a =  lira - - ~  og ~cS) (B.5) ~ (  --L/2,  0), ( + L/2, O) 
L ~  oo 

Let us further assume that L is of the form nK with K large and, for the 
moment,  fixed. We can write 

G tf~ ~> G (f~ 
(-- i . /2 ,  0), ( +  L/2, O) f - -L]2 .  0), ( - -L]2  + K. O) 

X ('~'~ ( f )  (~'~ ( f )  
~ ( - - L / 2 + K . O ) , ( - - L / 2 + [ K + I ) , O ) ' ' "  V ( + L / 2 - - K . O ) . ( + L / 2 . 0 )  

(B.6) 

Let us focus attention on the r th [or  ( n - r ) t h ]  term in the above product: 
G(f) L/2--rK. 0).(La--~,--~)r, 0)" We claim that except for the first and last few 
terms, these probabilities differ only slightly from the corresponding 
probabilities in the infinite-volume state: 

GL/2_rK, O),(L/2_(r_I)K, 0 = G0,(K, 0 ) 

To see this, let/~r denote the event that there is a connection between one 
of the points ( L / 2 - ( r - 1 ) K ,  0) or (L /2 - rK ,  O) and the boundary OIL. 
It is not hard to show that, in the infinite- volume state, 

Prob(/~r) ~< const �9 L2e - - m i L l 2  - - ( r - -  1)K] 

Now observe that the infinite state conditional probability 

Prob( T(L/2 _,x, o). (L/2-(r- l)f, O) [ "tl~c) 
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is actually smaller than ~l f )  ~ ( L/2 -- rK. 0). ( L/2 -- (r -- 1 ) K, 0)" Indeed this conditioning 
necessarily implies the presence of boundary  conditions less favorable to 
the event in question. Thus we may  write 

GtSl H D , .  (B.7) ( - -  L / 2 ,  0) ,  I + L / 2 ,  0)  ~ 
r 

where D , . = G o . ~ K . o ~ - P r o b ( R , . )  if the latter is positive and is just the 
r th  term on the r ight-hand side of  Eq. (B.6) for the few terms where this 
happens to be negative. The result as L--* or, is 

- l o g  G O IK o> 
a ~ <  " " ( B . 8 )  

K 

which implies m >/a  and hence that m = a. I 

We now launch into our  p rogram designed to keep the paths away 
from the boundary.  

D e f i n i t i o n .  Let T be some integer larger than two. We define a 
string cluster of  length T on Z 2 to be a connected cluster of size T such that 
each site in the string has at most  two neighbors in the cluster, and two 
distinguished s i tes-- the  endpo in t s - -have  but one neighbor in the cluster. 
Observe that  this is slightly more  restrictive than the sites of a SAW since 
here no doubling back is permitted. Let ~ ..... ~,:r denote all the string 
clusters of length T that  contain the origin, and let ffj. L denote the lattice 
where each site of ~j  is replaced by an L x L square. We will consider 
r andom cluster problems on the ffz L with wired boundary  conditions. For  
any j ,  consider the lattice ~(gj. L, which is ts z L with its endboxes lopped off. 
If, in d~;j. L, we neglect that  port ion of the boundary  that used to be in the 
interior, the remainder  of  the boundary  is divided into two disjoint com- 
ponents. We will denote these by O a ~ j , L  and O s d ~ j . L  respectively. 
The reader may  wish to consult  Fig. 6 for an illustration of the above-  
ment ioned objects. 

~j+ L 

N 

Fig. 6. ~]. L and related constructs. 
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For the FK problem on the lattice ~g. L, we define ~j. L to be the event 
that either: 

(i) There is a path of occupied bonds connecting the two endboxes. 

Or: 

(ii) There is a path of occupied bonds in 6gj. L connecting aA&gj. L 
with Oa~fi;j, L. 

We define 

T m  e L -  min Prob(&j L) (B.9) 
1 <~j<~vT 

where the above probability is measured with respect to the wired states on 
the associated lattice r It is observed that both (i) and (ii) are deter- 
mined by the configuration in &6:j. L. 

We note that for it < it,, ( r  ~ 0; indeed r < e -~L. However, because 
(for big enough T) the paths are required to be long or are not allowed to 
creep along the boundary, we get a far more desirable result. 

Proposi t ion B,3. Consider the q-state random cluster models with 
q/> 1 and 2 < 2,. Let T be any integer, assumed for simplicity to be even, 
that is large enough to ensure ( T/2 - 1 ) ~ > a. Then 

lim ((T~l/Z=e--~ 
LJ 

L ~ o o  

Proof.  Let T satisfy the above criteria and, in what follows, we will 
suppress most of the T dependence in our notation. Let Ej denote one of 
the basic shapes and let L'  >>L ~> 1. Note that if a crossing of type (ii) 
occurs on Ez L, then at least �89 rectangles of dimension 2L' x L'  must 
be threaded by the old definition. (Cf. Proposition 2.5 or Lemma B.I.) Thus 
these types of crossings will not be a major concern since they will have a 
probability smaller than the order of e - ' z '  

In the vicinity of the two boundary regions OA(6~j, L') and Os(6~j,  L'), 
let us define two "comfort zones" which consist of all sites in ~j, L, that are 
less than L steps away from these boundaries. Any path between aA(6~j, L') 
and OB(6~j,L,) in &~ZL' necessarily implies a path between the two com- 
ponents of the comfort zone that takes place in the complement of the 
comfort zone. 

As in the previous proofs, to each path we will associate a spanning 
cluster, but in this case, comprised of the shapes ~ I , L  . . . . .  ~VT,  L" We again 
conveniently assume that L'  is a multiple of L, and divide E j, L, into L x L 
boxes Once the path moves away from the comfort zone associated with 
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OA(JCgZ z'), one possibility is that before it breaks through the layer of L x L 
boxes blanketing this comfort zone, it will wander inside a string of T- -  1 
boxes. In this ease, we have observed a path of type (i) in a translation of 
some Ek, L. The other possibility is that it breaks through this layer without 
having achieved the above dubious accomplishment. In this case we can 
find a string of T boxes ~k, L such that a path of type (ii) has occurred on 
this lattice. Of  course in this latter case (and to a lesser extent in the former 
case) we may have some leeway in our choice of which boxes constitute 
our collection l~k, L; now and in the future, a definitive choice will be made 
according to some deterministic rule. It is noted that in order to perform 
this task, we may have picked a Ek, L with one of its endboxes in the com- 
fort zone or in one of the (big) endboxes gj. L,\Jt~j. L" This is fine because, 
by definition of the full event under consideration, the path itself must stay 
out of this region. 

After the ith stage of the construction has been completed, we adjoin 
the ( i +  1)th string pretty much in accord with the procedure of Proposi- 
tion 2.5: We construct the 7/2 boundary of the existing cluster (where the 
L x L squares are now regarded as sites and the relevant notion of connec- 
tivity is ,-connectedness) and intersect this object with ~ , c .  The next 
shape to join the cluster will be a string of length T chosen out of this 
string boundary. 

Using the same logic that was used in Proposition 2.5, we see that the 
forward progress at each stage is no more than L units. Indeed the external 
boundary is located inside or on the smallest rectangle that can be drawn 
outside the cluster. 

We are now ready to track the path as it continues on its journey 
across J~zL' .  Either it wanders through T - 1  successive boxes in the 
current string boundary or (as is far more likely) it crosses this boundary 
before having done so. When it has achieved either of these goals, we can 
contain that portion of the path that has done the job in a copy of one of 
the Ek. L'S. Of course, needless to say, we may have to use our deterministic 
rule to ascertain which one. 

The next few steps differ in only in minor details from those of 
Proposition 2.5 or Lemma B.1. The result is that we may write 

~z' = ~ 9J~r(K)[~z] K (B.IO) 
K>~ L ' / L - -  2 

where 9J/r(K) is the number of appropriate spanning clusters that consist 
of K string clusters of length T. (The - 2  is for the comfort zones.) Our 
next step is to dispense with the issue of "cluster entropy." As usual, it is 
standard that limK~o~ [g31r(K)] ~/K exists; thus the only question is 
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whether this limit is finite. It is noted that an extension of the argument 
that was used in the case T - - 2  may be applied. However, the general case 
is best dispensed with by the following: Let us count the number of distinct 
shapes that go into 9Jlr(K) and denote this by mr(K).  It is obvious that 
[mr (K)  ] l/r is bounded. However, we still have to account for the different 
ways that a given shape can be broken up into K string clusters of length 
7". By definition, there are vr different types of string clusters and thus Tvr 
distinct clusters that contain the origin. Hence, any given site in any given 
shape gives rise to at most Tvr possibilities. Allowing for all possibilities at 
all of the KT sites then gives us the drastic overestimate of 

9Jlr(K) <~ mr(K)[  Tvr] rr (B.11) 

which is sufficient for our purposes. 
Next, it has to be shown that the sum in Eq. (B.10) is convergent: this 

input we get straight from Lemma B.1 and the fact that 2 <2, .  These are 
all the ingredients needed to show that 

e - ~ =  lim r ~/L (B.12) "~L 
L ~ o ~  

exists. Furthermore, we have that ~>~(>~a=m. Although we should 
provisionally state that ( may have T dependence, it is not hard to modify 
the preceding argument, using different T's on the different scales, to show 
that ( is independent of T. (Assuming, of course that T satisfies the 
hypothesis of this proposition.) Our final job, then, is to show that ( =  m. 

All things considered, this final step is not particularly difficult; the 
reasoning follows closely that of Lemma B.2. Let L ~ 1 and let us consider 
the event ~i, L on some lattice ~z L' AS discussed before, we need only con- 

~ ( i i )  sider the paths of type (ii); let us denote the event of such a path by ~j, L- 
We divide ~j, L into top, bottom and middle "thirds," as illustrated in 

L \ 

. . . . . . . . . . . . . .  l . . . . . . . . . . . . . .  

iiii iiiii!iiiiiiiiiiiiili!i!iiiiiiiiiiiiiiiiii!iiiiiili   iiii 

8 rP~A~ / /  
v.~j, L 

Fig. 7. Paths for the events ~ t A ] _ ~ [ c ]  j , L  ~ j ,  L �9 
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Fig. 7. These will be denoted by fr(A)~g,z, ~(s)j,z, and ~:,z,~ where, e.g., ~J,~) has 
all of Oa6~zL in its boundary, etc. We will denote the "amputated" 
versions of these lattices by ~ j a ) ,  ,~or(c) The event a~(u) is contained in "", ~ j ,  L" ~ j ,  L 
the intersection of three events: 

~[ '~ ~ c ~  ] c ~  c] (B.13) 

where ~E,4~,~ is the event that there is a path in 8~).A~) connecting the top and 
bottom portions of its boundary (the latter being the old 0~8~zL ), 
similarly for ~ ,  and ~tc~ is the event that there is a path in 6~(,~, 
connecting the portions of its boundary that it shares with ~;)A~) and 8 ~ .  
In the final event, it is required that the path lie far away from the influence 
of the fixed boundary conditions on 0~,  ~. This is the key fact in the proof 
of the lemma. 

On the basis of Eq. (B.13), we can write 

~ [ c ]  ~ C C ]  Prob(~j,(i;)L) ~< P r o b ( ~ c ~ )  P r o b ( ~  ] c ~ ,  . j,L [ j ,L) (B.14) 

where P r o b ( -  ) refers to the wired ensemble on ~j, L. 
As an upper bound, the conditioning for the event ~ t s j ~ t c l  ~), L ~), L can be 

replaced by wired boundary conditions on EJA L) and E~.,sL). If we do this, the 
probability factors and, in fact can be bounded above by a (Lr)3 and a (Lz)3 
with T', T" ~3T.  This leaves us to deal with the term P r o b ( ~ c a ) .  Con- 
sider the event ~E<>1 that there is a connection between the boundaries ~ j , L  , 

aEj, L and 6EJ.cL). We can, of course, write 

P r o b ( ~ ,  c~) = Prob(~},~ J) P r o b ( ~ c z  ~,  [ ,~Ec,]~j,L, 

+ I1 -- P r o b ( ~ ] ) ]  Prob(b~, c] [ NOT[~,~]] )  (B.15) 

where, at this point, N O T [ ~ O L  ] ] is the only available notation for the 
complement of the event ~ ) .  

Obviously, b~.~ ] and ~ c ]  are subsets of b~.~ ], but now other con- 
nections are deemed to be possible. Nevertheless, we claim that for any 
~-'~ ~', if L is sufficiently large, P r o b ( ~ , ~  ]) ~< e -r Indeed, picking an L 
with 1 ,~ s ~ L, we can define a comfort, zone around 0 ~j. L of width L and 
do an expansion along the previous lines using the shapes ~j. ~ at any 
desirable value of T. The result is 

Pr~ ?) ~< Z ~0~ ~,(~ (B.16) 
K> (1/3) s 

which immediately leads to the promised claim. 
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Now if the event ~ [ o ] j.z. occurs, we will (generously) estimate the prob- 
ability of N~.c] by its probability with wired boundary conditions on fi;:. t.. 
But by the results and techniques of Lemma B.1, we know that this is of the 
order of e -e/3. Hence, for L large, the overall contribution from this term 
to the estimate in Eq. (B.14) can be bounded by e-r  -o'L, where ( '  is 
any number smaller than ( and #' is any number smaller than ~. Needless 
to say, this is utterly negligible. This leaves us with 

Prob(~:. L)< (r)3 (r"L/3 P r o b ( ~ ,  cl I NOT[~.~] ]) (B.17) 

where we have neglected terms on the right-hand side that are relatively 
exponentially small in L. Examining the final term, we see, as was the case 
in Lemma B.2, that the conditioning is "worse" (in the sense of FKG)  than 
the probability of observing this event in the infinite-volume state. By 
standard decay of correlation arguments, the latter is easily estimated by 
const. L2e -''L/3. Thus, taking the appropriate action, we arrive at 

~ '>~r  �89 (B.18) 

which gives us the desired result. ] 

P r o o f  o f  T h e o r e m  2.7. The proof of Theorem 2.7 amounts to a 
rewrite of Proposition 2.5 and Theorem 2.6 armed with the technology of 
Proposition B.3. We will therefore present just the outliile of a proof. Let 
T be sufficiently large by the criterion of Proposition B.3. Rather than 
obtaining estimates on the quantities e -s"u", we will focus on events of the 
type N j, t on the lattices ~j, z. with wired boundary conditions. The first 
step is the analog of Proposition 2.5, namely establishing that, in the 
specified regime, the surface tension is positive. We consider T independent 
realizations of the configurations G~,~, ~ placed together so as to form the 
shape fi;j. We let ~ . . . .  (j) denote the event of a crack down the longitudinal 
direction of ~j connecting the boundaries of the end boxes together with 
whatever transverse boxes are required to ensure that all of the inside 
squares are crossed by cracks in both directions. It is seen that if m > ko, 
Prob(~ .... (j)) obeys a bound analogous to the one in Eq. (2.10). 

Given that ~,,.r(J) has occurred, on expanding to configurations of 
the type ,-,(r) in each square of fi;j, it is seen that the cost of observing the I ' J  rn; l 

sorts of paths which constitute ~:.L will be of the order e - `N: .  Paths of 
type (i) must be treated by a relatively primitive T =  2 argument and those 
of type (ii) by expanding in clusters composed of the shapes fi;z u,- In the 
latter case, we will of course need to construct a comfort zone of width 
~ N :  lattice spacings on the wired lattices ~:. m,+, to protect ourselves 
from the boundary conditions. In either case, the requisite decay factor 
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always comes from the portions of the paths that are forced to cross the 
cracks. 

We now examine the lattices Ey of scale N"  +~ with n >> m and define 
f-normalcy in terms of spanning clusters composed of T-strings using the 
shapes Ej at scale N "  + t. Following through with the analog of remainder 
of Proposition 2.5 [Eq. (2.13)-(2.16)] we have established the positivity of 
the surface tension. Next, a supplementary argument using the primitive 
2 N  m + t x  N ' ' + t  squares must be employed for the benefit of the paths of 
type (i) that creep along the boundary: Then we have achieved a starting 
point for the sequences fk, m~, r k, ~k and, most importantly, wk. 

The remainder of the proof requires no significant additional modifica- 
tions of the previous arguments. As with the proof of Theorem 2.6, 
new large-scale cracks are introduced along the lines of the event 

.... ( j ) , j =  1, 2 ..... yr .  To estimate the probability of observing a path of 
type (ii) in a wired lattice where a large crack is present, we start by intro- 
ducing the appropriate "comfort zones." Using the old q~,,k. ~,'s at the small 
scales, we find that the fraction of the minimal journey spent in the crack 
allows us to replace the corresponding faction of the existing Wk with a 
a '  ~ a yielding an improved w~'. Going to a much larger scale, these cracks 
now become the largest scale in a network of fissures. In order to prevent 
the new estimate on the surface tension from sagging, in the regions where 
the largest fissures are absent, we must use all of the smaller scales. Finally, 
each stage of the argument must also include a (relatively easy) T = 2  
subroutine to handle the paths of type (i). The ultimate conclusion is that 
the (wk) are driven to a, the value of the surface tension in the uniform 
system. As noted in the corollary to Theorem 2.6, each w k also provides a 
bound for an appropriate cutoff surface tension, hence the desired result is 
automatically established for a*. | 
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