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Abstract: We study the continuum Widom-Rowlinson model of interpenetrating 
spheres. Using a new geometric representation for this system, we provide a simple 
percolation-based proof of the phase transition. We also use this representation to 
formulate the problem, and prove the existence of an interfacial tension between co- 
existing phases. Finally, we ascribe geometric (i.e. probabilistic) significance to the 
correlation functions which allows us to prove the existence of a sharp correlation 
length in the single-phase regime. 

1. Introduction 

1A. B a c k g r o u n d  a n d  s t a t e m e n t  o f  results.  The Widom-Rowlinson model [WR] is 
a simple and beautiful model of  continuum particles. It is of  interest both because 
of it applicability in the description of continuum systems, and because it is the 
only continuum system for which a phase transition has been rigorously established 
[R]. The Widom-Rowlinson (WR) model has two equivalent standard formulations 
- one as a binary gas and the other as a single-species model of a dense (liquid) 
phase in contact with a rarefied (gas) ~ phase. In the binary gas formulation, the 
only interaction is a hard-core exclusion between the two species of particles - 
call them A and B. There is no intraspecies interaction: two particles of  the same 
type can interpenetrate freely. The phase diagram of the model is a function of the 
fugacities, ZA and zB, of  the two species. Clearly, there is a symmetry between A 
and B particles; hence ZA = z8 = Z is a line of symmetry of the phase diagram. For 
both the continuum and lattice versions of  the model, it has been shown via Peierls' 
arguments that for z large enough, the symmetry is spontaneously broken, yielding 
two phases: one is A-rich and the other is B-rich [LG, R]. The transition between 
these phases is first-order. It is expected, but not proved that the line zA = z~ = z 
of first-order transitions ends in a critical point at some positive value z = zc of  
the common fugaeity. The single-species formulation of the model is obtained by 
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integrating out the coordinates of one (say the B) species (see below). The effective 
diameter of the particles of the remaining species is then twice the original diameter. 
The phase transition in the binary formulation maps into a liquid-vapor transition in 
the single-species version. 

The purpose of our work is to show how the geometric ideas can be used 
to study the phase transition and the interfaces between the coexisting A and B 
or liquid and gas phases of the Widom-Rowlinson model. The key ingredient in 
our study is the introduction of a new stochastic representation for the Widom- 
Rowlinson measure. We obtain our new representation by first generating percolation 
configurations of spherical particles, identifying groups of particles with overlapping 
cores as being in the same cluster. We then "color" each particle either A or B. Given 
the hard-core constraint of the Widom-Rowlinson model, the only configurations 
which are allowed (i.e. the only ones which receive non-zero weight in the Widom- 
Rowlinson measure) are those for which particles in the same cluster are either all 
A or all B. Otherwise, the problem is unconstrained. The result is that all allowed 
configurations have weights which depend exponentially on the number of clusters 
within them. Anyone who is familiar with the Fortuin-Kasteleyn representation of 
the Potts model [FK] should see immediately that our representation does for the 
Widom-Rowlinson model what the Fortuin-Kasteleyn representation does for the 
Potts model. Indeed, the symmetries of the Widom-Rowlinson model are manifest 
in our new representation. 

We use our new representation to establish many properties of the Widom- 
Rowlinson model. In Sect. 2, we apply percolation methods and use a continu- 
turn analog of FKG-domination lemmas to present a new proof of the existence 
of a phase transition in two and higher dimensions. This proof is completely self- 
contained and represents a conceptual simplification of the classic works on the sub- 
ject [R, LL, GL]. In Sect. 2, we also describe the symmetry-broken phase in terms 
of percolation and give an appropriate order parameter for the transition. A new 
proof of the FKG property used for this characterization is given in the Appendix; 
the original proof can be found in [LM, CGLM]. In Sect. 3, we use monotonicity 
properties of the representation to establish the existence of an interfacial or surface 
tension between coexisting phases. This is the first proof of existence of a surface 
tension in a continuum model. In Sect. 4, we prove the existence of a correlation 
length for the two-dimensional model in the single-phase regime. In order to do this, 
we introduce several correlation functions and bound them in terms of each other. 
Existence of a correlation length is then established using one of these functions. 

lB.  The model. The Widom-Rowlinson model is a classical statistical mechanics 
system of interacting particles. To define the model we write the interaction energy, 
UN(Xl . . . . .  XN), of N particles located at the points Xl,X2,... ,XN E IRa as follows: 
For any y E IR d, we define the halo of y to be the ball of radius 2a with the 
center at y, h(y) -= {x E lRd: Ix - Yl < 2a}. The halo of a set F is the union Of the 
halos of its points, h(F)  = �9 The energy UN(Xb.. .  ,xlv) of the configuration 
(xl . . . .  , XN) is just the difference of the volume V(Xl , . . . ,  XN) of the halo h(xl . . . . .  XN) 
and the sum ~N=, th(x*)l, 

UN(xl . . . . .  XN) = V(xl . . . .  ,XN) -- NVo , (1.1) 

where V0 is the volume of a ball of radius 2a. Although the interaction (1.1) is 
(pairwise) attractive, achieving a potential minimum at zero separation, the system 
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is, overall, H-stable 
0 > UN(Xb...,XN) > -NVo ,  (l.2) 

due to multiparticle effects that saturate the attraction. 
The grand-canonical partition function at fugacity z and inverse temperature 

fi is defined in the usual fashion: Let A C N a be the interior of some (regu- 
lar) finite vessel. We use the notation (D N ~ (Xl , . . .  ,XN)  and dcox = ddxl . . .  ddxN. 
Depending on the particular "boundary condition" q, we write Vn(ON) (and 
correspondingly U~r(COU)). Three natural boundary conditions are: free (F), attrac- 
tive (A), and repulsive (R). These are introduced by taking vF(coN) = th(ON) n A[, 
vR(oN) = ]h(CON)[, and vA(oN)=  [h(~ON)N Aa[, where Aa C A is obtained by 
deleting from A all points within a distance a of the boundary ~3A. It is not hard 
to see that attractive boundary conditions actually favor the presence of particles 
near the boundary while repulsive boundary conditions tend to repel them. Then the 
grand-canonical partition function is 

ZAO"(z, fi) = EzNZ~N~(fl), (1.3) 
N 

where 

Z~c(f l )  = 1. f dmNe--~U~(~ . (1.4) 
, IV! A 

A priori this model does not seem to have any distinguishing features that would 
make the study of the liquid-gas transition particularly tractable. 

In an equivalent formulation of the model (also introduced in [WR]), one consid- 
ers two species of particles, A and B. Here, there is a hard-core exclusion between 
A and B particles but no interaction between pairs of A or pairs of B particles. 
Formally, if there are particles located at the positions xl and x2, we may put 

VAA(XI,N2) = VBB(XI,X2) ~- 0 (1.5)  

and 
0 if [xl --X2[ > 2a , 

VaB(Xl,X2 ) = (1.6) 
oc otherwise . 

The grand canonical partition function, at fugacities ZA and ZB in a volume A is 
given by 

,~.0 tI(ZA, ZB ) = ~ Z- AMZBN,~OLA,M,Nrl (1.7) ~ A  
M,N 

where 
O rl 1 A B rl A B -- f doMdOONZ (tOM, ON) (1.8) Z~'M~ M!N! A 

with )~q(c@t, co~r ) defined to be zero if the above described hard-core condition is 
violated in the configuration (O~M, CO~) with the boundary condition r/, and unity 
otherwise. Relevant here are the "A-only" boundary conditions, where each point of 
•A is deemed to be occupied by an A particle, the "B-only," and the free boundary 
conditions. 

Equations (1.3) and (1.7) enable one to define the grand-canonical Gibbs mea- 
Oq and #| sures [s fl A, ZA,ZB" 
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Equivalence of the two-component system (1.5) - (1.8) to the one-component 
model (1.1)-(1.4) is readily demonstrated. Simply fix the configuration o/~ of A 
particles and integrate over configurations co~v of B particles. It is seen that each 
of the B particles moves freely through the region A \ h(o/~), yielding a factor of 
IA \ h ( o ~ )  I to the N th power. Summing over N gives, up to irrelevant constants, 
the partition function (1.4) with interaction (1.1) at an effective temperature given 

by zB = ft. Here, as it turns out, the measure /~A, ~A, zB transforms, after integrating 

O ,~ where q = A boundary condi- out the B-particles, into the measure/~n, z=zAe-~Vo, ~=zB' 
tions transform into the attractive boundary conditions, ~ = A, B into repulsive, and 
free into free boundary conditions. In the next section we will define yet a third 
representation for this model. 

2. The Phase Transition 

2A. The Gray Representation. We call the proposed new description of the Widom 
Rowlinson system the gray or color-blind representation. Let A C IRa and, for the 
moment, let us ignore the boundary conditions on A. Also, in order to simplify this 
section, let us consider only hypercubic I subsets of IRa. Denote by CON = (xl . . . . .  XN) 
any configuration of N points in A and by SN any of the 2 N conceivable colorings 
(i.e. assignments of the A and B labels) of the N given particles. Weighting A and 
B particles equally, we may write the configurational partition function for the N 
particles as 

z J_ 1 N! f dCONdSNZrIN(CON,SN), (2.1) 
8N, 09N 

where 

1 if the configuration {CON,SN} is "allowed" 

XnN(CON,SN) = 0 if the configuration {CON,SN} is "forbidden" 
(2.2) 

with given boundary condition t/. For any particle k = 1 , . . . ,N,  centered at any 
point xk E A, we may define the core region 

c(x~) = {x E IR a I Ix-xk[  < a} .  (2.3) 

If o N is a configuration, the set 

e(CON) = U COck) ( 2 . 4 )  
xk C ~ON 

consists of distinct components or clusters. Two particles in CON are said to be core 
connected if they belong to the same component. 

It is evident that if c(x;) and e(x/) overlap for some i and j ,  then Z~(~olv,sN) 
will vanish unless i and j belong to the same species. This observation obviously 
generalizes: each separate cluster of  CON must be composed of  a single species. The 
number of ways in which this can be arranged is clearly 2 ~"(~v), where 

~"(cox) = # of components of c(cou) with the boundary condition q.  (2.5) 

1 It turns out, however, that all our results hold in more generality, e.g. in the case in which we take 
the thermodynamic limit in the sense of van Hove. 
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Of course, Eq. (2.5) must be carefully interpreted in the presence of specific 
boundary conditions. In the simplest cases, the interpretation is straightforward - -  
in particular, for free (or periodic) boundary conditions, cgF(CON) (or cgP(CON)) 
is just the number of clusters. Also of interest in this section are the "A-only" 
boundary conditions, where each point of 0A is deemed to be occupied by an 
A particle. Here the number of clusters cgA(CON) counts all clusters connected to 
0Aa = {x E A, dist(x, OA) =< a} as a single cluster. For this system, we will denote 

the associated gray measure by # ~ A ( .  ). 
Hence we can write (2.1) as 

Z@ q 1 dcoN2~,(coN) 
A,N = N~ " f 

co N 
(2.6) 

In particular, we may express the relative probability of the "gray" configuration, 
CON, as 

�9 ~ 1 .,~,,(coN)dco . (2.7) PrA, N(CON ) ~ - -  N!Z N 

We may also define a corresponding grand-canonical gray measure at fugacity 

z: U~z ~. From Eq. (2.7) it is seen that if we consider / ~ 7  conditioned on the 
N-particle state, then the Radon-Nikod~,m derivative of th~s conditional measure 
relative to the Poisson point process at intensity z (also conditioned on N particles) 
is precisely 2 ~"(cou). 

A major advantage of the color-blind formalism is that it allows a compari- 
son between the WR system and an ideal gas. The comparison we have in mind 
is the continuum analog of FKG-type dominations that are widely used in lattice 
systems. For continuum problems we proceed as follows. Let CON = (Xl,... ,XN) and 
COM = (Yl . . . . .  YM) denote N and M particle configurations, respectively. We say that 
COM ~ CON if for each k we can find a j such that xk = yj. Somewhat less precisely, 
COM ~ CON if  COM D CON. 

An event d is said to be increasing if, for any co C ~r it is the case that t /E d 
for all t/m co. In other words, the event d is never destroyed by adding particles to 
a configuration in which it occurs. If #A and VA are two (grand-canonical) measures, 
we say that 

~A(-)  > VA(--) (2.8) 
FKG 

if/~A(~r > VA(~r whenever ~r is an increasing event. 
The following is a continuurn analog of a result that is standard in discrete 

systems. (It can also be obtained as a special case of Theorem 9.1 of [P] or Lemma 
2.1 of [J].) 

Proposition 2.1. Let PA( " ) d e n o t e  a grand-canonical measure for indistinguishable 
particles on some A c ]Ra with N-particle conditional measures 

1 
dflA, N(CON ) = ~ .  WN(CON )dcoN 

with WN(CON ) a.e. continuous, positive and satisfying the usual stability hypothesis 
(i.e. WN ~ ebN for some b < o~). For y C A, regard (coN, Y) as an N + 1 particle 
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configuration, and define 

i f=  inf WN+I(O)N'Y) 
N, CON, Y W N (  O)N ) 

Then 
~A(  " ) > ' [1] f 

= /~A,~k " ) ,  
FKG 

where , [I] ( t~A,[~, �9 ) is the Poisson point process (ideal 9as) o f  intensity ~. 

Remark. The above should seem reasonable in light of the physical interpretation 
of ff as the probability density in the worst case scenario for adding a particle to A. 

Proof  This is a straightforward consequence of the following: Let Sb . . . ,  Sk denote 
a sequence of random variables, with each Si E {0, 1}, and define 

~i = min Probs(Si = 1 IS1,. . .  , S i - l , S i + l  . . . . .  S k ) .  (2.9) 
Sl ,..., Si- b Si+ l ,..., Sk 

Then Probs( - )  dominates, in the sense of FKG, the Bernoulli ProbR(-) in which 
the random variables Ri, i = 1 , . . . , k ,  are assigned ProbR(Ri = 1) = ffi. This result, 
which is easily established by induction, has been proved (or assumed) in many 
places. A general result along these lines is the subject of the first lemma in [Ru]. 

For the case at hand, we construct a discrete approximation to the continuum 
process by considering the lattice problem on e2g a N A, where c~g a is the hypercubic 
lattice with spacing c. We assign {0, 1}-valued random variables Sx, x E e2U n A, 
to each of the M(e) ~ ]Ale -d points in eZ d n A, with joint probabilities given by 

Prob(Sx, . . . . .  SXN = 1,Sx = 0 for x + x l , . . . , X N )  O( e d N W N ( x l , . . .  , X N ) .  (2.10) 

We note that the left-hand side of Eq. (2.10) is identified with the N! equivalent 
configurations in which a particle is to be found in the e-vicinity of each of the points 
(xl . . . .  ,Xu). By hypothesis, ~i(c) > ~c a, so at each stage of the construction, the 

~e a discrete measures dominate Bernoulli (percolation) measure at density p -  l_~d. 
The desired result now follows by continuity of the e + 0 limit. [] 

O A  
Corollary. The (gray) WR measures #~zF ( - )  and ]~A,z (--) dominate, in the sense 

o f  FKG, the Ideal Gas at a reduced fugacity 2z, where, 2 = �89 and 1 for  d = 1 
and d = 2, respectively, while, for 9eneral dimension, 2(d) may be estimated. 

Proof. We examine the formula 

WN+I (CON' Y) -- z2 ~'~(~~176 . (2.11 ) 
WN(cou) 

The quantity in the exponent is the number of clusters lost (or gained) in co N by 
the placement of an additional particle at the point y. This is, at most, 1 in d = 1, 
5 in d = 2, and, in general dimension, we may estimate 2(d) > 1 [] 2(3,/_1)" 
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2B. Proof of  the Phase Transition. In this and in the next subsection, we will make 
precise the connection between percolation (in the gray measure) and symmetry 
breaking in the A-B problem. As is usual in these sorts of  arguments, our starting 
point is to consider some enormous F C lRa with fixed boundary conditions, and 
then focus attention on some large A C F. We then attempt to make statements 
about the situation in A which are uniform in F. Finally, we allow A to achieve 
thermodynamic proportions. The definition of "percolation" that tums out to be 
correct for this system is as follows. 

Definition. Let A and F, A C F, be hypercubes centered at the origin and let 

NA, ar = # of particles in A that are core-connected to the boundary 0F .  

The fraction of  percolating sites is defined as 

1 OA 
p ~  = lim 7:7 lim #r (NA, er),  (2.12) 

A..ZN a VII F/zN a 

where the limits A Z IRa and F , / I R  d are taken e.g. in such a way as to minimize 
the left hand side. (The existence of this limit will be established in Subsect. 2C.) 

The principle result of this section now amounts to little more than an 
observation: 

Theorem 2.2. In any dimension d > 2, for z sufficiently large, symmetry breakin9 
occurs in the WR model. 

Proof Consider the F-A setup as described above with A boundary conditions on 
c3F. We claim that it is sufficient to establish percolation in the gray model. (In fact, 
later we will show that this is the necessary and sufficient condition.) Indeed, in any 
configuration co, it is clear that those gray particles in A which are detached from 
the boundary OF contribute equally to the A and B particle density, while those in 
the connected component of OF are forced to be of the A-type: 

| �9 
#F (NA, A --NB, A) = /@ (NA, 0r) ,  (2.13) 

where NA, A =NA, A(co) is the number of A particles inside of A, etc. The stated 
claim follows immediately from Eqs. (2.12) and (2.13). What remains, then, is to 
show that, for sufficiently high fugacities, there is percolation in the gray measures. 
However, by Proposition 2.1, this has been reduced to showing that there is perco- 
lation in a non-interacting system. 

This well known result is easily demonstrated by dividing IR d up into a hypercu- 
bic lattice of cell size l = ~ and calling a cell "occupied" if it contains a particle. 

It is seen that when neighboring cells are occupied, their occupants are forced to 
overlap. It is sufficient, then, to push the occupation probability, 1 - exp{-2z  I ~ [a}, 

past the percolation threshold pc(d) of the d-dimensional hypercubie lattice, which 
is non-trivial once d > 2. [] 

2C. Characterization of the Symmetry-Broken Phase via Percolation. The above 
derivation makes it clear that percolation of  cores is the proper characterization 
of coexistence along the line of symmetry. In this section, we will sharpen this 
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notion by first showing that the relevant percolation density has a well-defined lim- 
iting value, and then demonstrating that this density is indeed an appropriate order 
parameter for the transition. 

Crucial to our analysis are the FKG properties of the various measures discussed 
in the Appendix. If ff and co are particle configurations, the relevant notion for the 1- 
component measure is again that ~ > co if ff C co. For the two-component problems, 
if co = (coA,coB) and ff = (~A,~B) are particle configurations, we say that ~ > co if 
ffA D coA and fie C coe. In the Appendix we (re)prove that various conditional finite 
volume one-component and two-component measures enjoy the FKG property. 

Proposition 2,3. Let FL denote the standard sequence of hypercubes of side L tend- 
OA (DR (~A (~)B 

in 9 to infinity and consider the measures #r , #c , #r , and #r . Then the 
limitin9 measures #O A(_ ), #OR(_),  #@ A(_ ), and #| 8 ( -  ) exist. Furthermore, 
all of these measures are translation and rotation invariant. Finally, the percolation 
density, defined as in Eq. (2.12), exists. 

Proof We will deal exclusively with the case #OA(_);  the others follow from 
similar arguments. Existence of the (vague) limit is straightforward. Indeed, if 
L1 > L2, the discussion in the remark following Proposition A.2 gives us that 

# ~ A ( _ )  __< # ~ A ( _ ) ,  (2.14) 
FKG 

OA where, of course, by #rL2 ( - )  we mean its restriction to FLa. Therefore, the existence 

of limiting expectations for local cylinder events is immediate: it is sufficient to show 

that if ~ is the event that there are at least Kj particles in the set Sj, j = 1, . . . ,n,  
(with @ of positive Lebesgue measure) that 

lim #r  (2.15) /'-~r 

exists. However, this follows by monotonicity. 
Translation invariance can be established by the following considerations: Let 

~4 denote an increasing local event and let ~r denote the same event shifted by 
the vector x. We claim that #OA(sr = #OA(sCx). Indeed, both quantities may be 

O A~ expressed as limits: #OA(~Cx)= limL--+oo #rL (Sgx), etc. Let FL,~ denote the box 
EL centered at x and let L1 C L2 C L3 be chosen in such a way that 

Then we have 

FL~ C FL2,x C FL3 �9 (2.16) 

#rL, ( dx )  > #rL2,x(dx)= # (sr > # ( d ) ,  (2.17) 

which establishes translation invariance. 
Rotation invariance follows from a similar argument with the shifted box FL2,x 

and event d x  replaced by ones that have been rotated. 
Similar considerations apply to the slightly non-local functions 

N A = # of A particles in A connected to OF (2.18) A, c~F 
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i.e., .ArA,~ " OA A = l a m r ~  #r (N~,ar) exists and depends only on the size (and shape) 
of A. However, if we divide (a regular) A into A1 U A2 with A1 C? A2 = ~ (or of 
zero measure), it is clear that #0)A a.s. JVJ,~ = ~ArJ~,o o + X~2 ,~  from which the 
existence of the percolation density is immediate. [] 

It is now easy to see that the limit p~  defined in Eq. (2.13) exists in a more 
general context. Furthermore, from the perspective of the two-component problem, 
poo is exactly the excess of the A particle density over the B particle density in the 
#| A measure. With a moment's thought, it is also seen to be the excess of particle 
density in the #(])A m e a s u r e  over the particle density in #OR, and therefore may 
be identified with the density of the condensate. We may thus state 

Corollary. For the one-component model along the symmetry line z = ~, and for 
the two-component model with zA = z,, percolation is the necessary and sufficient 
condition for the symmetry breaking. In particular, if p~  = O, the limiting infinite- 
volume one-component and two-component measures are unique. 

Proof. Consider e.g. the one-component case. It is not hard to see that for any 

collection o f  events E~ j, j = 1 . . . . .  n, one has 

lira #r  = lim Pr . (2.19) 
F---~oo F--~oc =1 

Indeed, the difference in these probabilities as measured in #r  O A(_) versus # ~  n (_ )  
can be bounded by the probability, in the gray measure, that at least one of the 
sets $1 . . . .  ,Sn is connected to OF. If poo = 0, this tends to zero and thus the two 
limiting measures coincide. Unicity follows because (the restriction of) any other 
one-component measure constructed with the same parameters and different boundary 

conditions lies, in the sense of FKG, between #OA(_)  and #fOR(-). [] 

3. Surface Tension 

We now turn our attention to the problem of surface tension in the Widom- 
Rowlinson model. Any "definition" of surface tension boils down to an assign- 
ment of the free energy (per unit area) necessary to create the interface. Thus we 
seek a situation where we can compare the free energies of two systems which are 
identical, save for the enforced presence in one of them of an interface separating 
two coexisting phases. In cases where the pure phases are related by symmetry 
(manifest or otherwise), it is usually straightforward to arrange this situation. To 
this end, we follow the continuum analog of the procedures which, by now, are 
standard in the study of lattice systems. 

To keep things conceptually manageable, we will confine our definitions and 
explicit derivations to the two-dimensional case. 

Definition 3.1. Let AL, M denote the two-dimensional region 

AL, M ---- {x I Ixll < L, Ix21 < M}  (3.1a) 

with the boundary 

8AL, M={xClR211Xl t=L&lx21 < M o r  Ix21=M&lxll < L } .  (3.1b) 
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For the two-component model, we will consider the analog of the Dobrushin bound- 
ary conditions by putting an A particle at each point of the upper boundary 

~AZ, M = {x ~ eAL,~ I x~ > 0},  (3.2a) 

while each point of the lower boundary 

OAL,,M = {X e ~3AL, M IX2 < O} (3.2b) 

houses a B particle. We use ~,| ~OS/~(z)) to denote the partition function at ~AM, L ~.-- 
fugacity ZA = z~ = z for this system. 

In the d-dimensional case, we let L = ( L 1  . . . .  ,La-1)  and define =| ~AM, L 
analogously. 

Remark .  It is clear that, in the immediate vicinity of the midplane points (i.e. in 
the two-dimensional case, the points (-4-L, 0)), these boundary conditions cannot be 
achieved by the physical presence of A and B particles in A~, M. These tiny violations 
of WR physics are of no significant consequence - -  they simply serve to create the 
boundary conditions that have the most ~esthetic appeal to the authors. In particular, 
if we use boundary conditions where A (B) particles inhabit the boundary only as 
low (high) as some x2 = s (x2 --- - s ) ,  s > a, respectively, all of  the forthcoming 
derivations remain pretty much intact. 

We define the surface tension in two dimensions by 

I- ~'@ ~/B l 
__1 lim / ~A~,~ / a = -  lim log[ ~,| t ' 

L--+oo L M----~oo k ~AL, M J 
(3.3) 

should such a limit exist, and similarly in d > 2. 

Theorem 3,1. The limit in Eq. (3.3) exists. Furthermore, the limit may  be taken 
in the reverse or intermediate order, i.e. 

F ~,@ A/B-I 
o - = -  lim lim 1 1og/~AL, M -  / 

u~oo L~oo Z / ~ /  
L ~A~,M J 

F ~@ A/~ 1 
= - lim 1 |~A~ | Z l~ j - 

Proof. The key observation is that the ratio in Eq. (3.3) has a probabilistic interpre- 
tation. Indeed, in any configuration in AL, M with any boundary condition on 0AL, M, 
there are only four types of particles: 

(1)particles that are connected (via a core-connected cluster) to 8A~, M and 

3AL, M, 

(2) particles that are connected to 8A~, M but not to 8A~,~, 
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(3)particles that are not connected to OA~,,M but are connected to C~AL,,M , 
(4)particles that are disconnected from all boundaries. 

~,@~/B ensemble, the type (1) is forbidden. Clearly, in the two-component ~ALu 
In order to recover the two-component representation from the color-blind rep- 

resentation of these particle configurations, we identify all particles of type (2) as 
A, all particles of type (3) as B, and clusters of particles of type (4) as A or B with 

1 probability g. 
Now suppose that, in this gray ensemble, we would choose to identify the par- 

ticles of type (3) as A-particles. A moment's thought shows that this produces the 
two-component ensemble with A-boundary conditions on AL, M subject to the con- 

,~(~ A/B i s  straint that no particle is connected to both OA~, M and 0A~, M. Since ~&,M 
precisely the grand canonical weight of all such configurations, it follows that 

| A/B 

~/k,M _ # ~ A ( x L  M ) (3.4) 
~ , O A  , , ' 

~AL, M 

where ~Q,M is the event 

SL, M = {CO ]there is no connection between OA[, M and 

aA~, u by A-type particles}. (3.5) 

Denoting the expectation on the right-hand side of Eq. (3.4) as KL, M, mono- 
tonicity in the boundary conditions implies that if M1 > M2, one has 

KL, M~ > KL, M2. (3.6) 

Next, let us place a translate A' of the volume AL1,M with A boundary condi- LI,M 
tions on 3A~I,M along side the volume AL2,M with A boundary conditions on 3AL~,M 
in such a way that their M-sided boundaries coincide. This creates an environment 
that is manifestly dominating, in the sense of FKG, the usual system in ALI+Z~,M 
with A boundary conditions on OAL~+L~y. However, in the former case, events in 
the left and right pieces are independent. This is easily demonstrated by showing 
that the weights for any CO c AtL~,M U AL2,M in the two-component ensemble factor 
into the corresponding weights for the left and right halves of the configuration. 

Putting the above two facts together leads to the inequality 

KL,+L2,M >= KLbMKL2,M �9 (3.7) 

The desired conclusions now follow from a fairly standard subroutine: Eq. (3.7) 
implies a subadditive inequality from which it is easy to establish the existence of 

a M = lira 1 L--+~-L logKL, M (3.8) 

along with the a priori bound KL, M < e - ~ L .  The inequality (3.6) implies that 

= lim aM (3.9) 
M--+  oo 

exists. Existence of a and the fact that 6 = a follows from the monotonicity in M 
of the KL, M and the a priori bounds. Existence of the surface tension in d > 2 
follows an identical set of arguments, the principal distinctions being notational. [] 
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4. Correlation Functions 

In this section we introduce various two-point functions for the WR systems. Of 
course, in any continuous classical system, the two-point function is generally ac- 
cepted as being the average of the (truncated) pair density operator. Here, partly 
for convenience and partly for ~esthetic appeal, we define the appropriate "density" 
at x to be unity if the point x is covered by a disk of radius a associated with the 
corresponding particle. Explicitly, for a configuration ~o, we define 

1 if o contains an A-particle within a distance a of x , 1 

ZA(x; o )  = 0 otherwise , 
(4. ) 

and similarly for ZB(x; o~). We use the notation ZA(x) = ZA(x; ~ )  in one-component 
representation as well. In terms of these quantities, we can define (truncated) two- 
and higher-point functions in the usual fashion. 

The one-component, two-component, and gray measures represent continuum 
stochastic geometric models in their own right. As such, the natural notion of cor- 
relation is in terms of connectivity. Thus one might consider the probability, e.g. 
in the gray measure, that two points lie in the same core-connected cluster. In this 
section we show that, in the single phase regime, the geometrical and statistical me- 
chanical notions of two-point correlation are intimately related. Explicitly, we show 
that density-density correlations in the one- and two-component models and den- 
sity excess-density excess correlations (in the two-component model) are bounded 
uniformly above and below (and in certain cases equal to) the probability of core 
connections in the gray measure. Relations of this form have been established previ- 
ously in the Fortuin-Kasteleyn representation of the Potts model (see e.g. [ACCN]) 
and the random current representation of the Ising model [A]. 

In order to define the various correlation functions, let us denote by ( - ) |  the 
expectation with respect to the infinite-volume measure #| �9 = 1,2, G. 

The statistical mechanical correlation functions we consider are: 

i) the density-density correlation functions 
(XA(x);z~(y)) =- (ZA(x)z4(y))-  (7~(x))(7~(y)) and 
(z~(x); zB(y)), 
where {-)  may be either the two-component measure or the appropriate (A 
or B) one-component measure, since these obviously give the same truncated 
correlations, and 

ii)the density excess-density excess correlation function 
(zA(x) - zs(x); zA(y) - z~(y)) ~ , 
while the geometrical correlation functions are: 

iii) the core-connected correlation functions 
#|  
where �9 refers to 1, 2, and G, and Txy is the event that x is core-connected 
to y, i.e. that c(x) and e(y) are in the same component. 

Theorem 4.1. Throughout the single-phase regime, along the line of symmetry, the 
correlation functions described above are bounded above and below by multiples 
of one another. Explicitly 

I) # 0  (Txy) --- 2# ~ (Txy) = #0  (Txy), 
2) (ZA(X);ZA(y)) O ----- (ZA(X);ZA(y)) 0 , 



Widom-Rowlinson Model 563 

3) #@ (Txy) -~- (ZA(X) -- ZB(X)'~ ZA(Y) -- XB(Y)) 0 , 
4) a(s #@(Txy)  < O~A(x);s O < �89 

Proof  1) By AB-symmetry, only half of the configurations which contribute to 
#@(Txy) also contribute to #(9(T~y) - namely those in which the connection takes 
place via an A-clus ter-  hence the second equality. That #@(Txy)= #@(Txy) is 
essentially a tautology - the configurations contributing to #@(T~y) are simply col- 
orings of those contributing to #@ (Txy). 

2) The relation (ZA(x);ZA(y))(9 = (ZA(X);ZA(y))(9 is also essentially tauto- 
logical, since #(9 is just the marginal of #@. 

3) First observe that, in the single-phase regime, there is no need to truncate the 
density excess: 

(Z~(x) - ZB(x); Z,~(Y) - ZB(Y)) | = ((ZA(X) -- Zs(X))(ZA(Y) -- Z~(Y))) @ �9 (4.2) 

Now, to see that 

#@ (Txy) = ( ( Z A ( X )  - -  ZB(X))(ZA(y) -- Z B ( y ) ) )  @ , (4.3) 

consider any gray configuration and observe that there are only three possibilities: 
either x or y is not in a cluster, or x and y are in separate clusters, or x and y 
are in the same cluster (i.e. Txy occurs). The first case clearly contributes nothing 
to (ZA(X) -- XB(X); ZA(Y) -- ZB(Y))(9. In the second case, we may condition on the 
"color" of e(y), and note that we then obtain equal and opposite contributions if 
c(x) is of  "color" A or B, resulting in exact cancellation. Finally if Txy occurs, the 
cluster connecting x and y is either of the A-type or the B-type, so that both terms 
of the product (ZA(X) -- ZB(x))(XA(y) -- Z~(Y)) are of the same sign. 

4) The upper bound is straightforward. Consider the event Txy that x is connected 
to y in the two-component model - the probability of which is #| (Txy). Other than 
those in Txy, the only additional configurations for which ZA(X)ZA(y) does not vanish 
are those for which x and y are in separate A-clusters. However, the probability of 
this (in the two-component measure) is exactly �88 of the probability in the gray 
measure that x and y are in separate clusters. But this latter quantity is also the 
probability (again in the two-component measure) of e.g. the event that x is in an 
A-cluster and y is in a B-cluster. We thus arrive at 

(ZA(X)ZA(Y)) @ = #@ (Txy) + (ZA(X)ZB(y)) @ - (4.4) 

However, by the FKG property of the #| measure, 

(ZA(X)ZB(y)) | < (zA(x))O (z~(y)) o , (4.5) 

while by symmetry, 
(Z~(y)) @ = (ZA(y)) 0 . (4.6) 

Equations (4.4)-(4.6) establish the desired upper bound. 
The lower bound will not come so easily. It turns out, however, that in order to 

prove this bound, it is not necessary to assume translation invariance of the system, 
provided that the boundary conditions are A - B  symmetric. We begin by defining 
ZG(x) to be the indicator of the event in the gray representation that x belongs to 
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the core of a particle and Zo(x) = 1 - ZG(x). To simplify the forthcoming algebraic 
manipulations, it is useful to define the following quantities: 

o~ = #@ (Txy) , (4.7~) 

the probability that x and y are in the same component, 

fl = { Z c ( x ) z c ( Y ) )  @ - #@ (Txy) , (4.7fl) 

the probability that x and y are in separate components, 

7 = (ZG(x)zo(Y))  �9 , (4.77) 

the probability that x is in the core region of some particle, but y is not, 

6 = ( Z r  @ , (4.76) 

as above, but with x and y interchanged, and 

e = (ZO(x)zo(y) )  �9 , (4.7e) 

the probability that neither x nor y are in the core region of any particle. 
It is not so hard to see that 

4[(ZA(X)ZA(y))  @ -- (ZA(x)) @ {ZA(y)) @ ] = (2c~ + fi) -- (~ + fl + y)(~ + fi + 6).  

(4.8) 

which translates to 

or 

i.e. 
O~A(X)ZA(Y))| > (ZA(Y))~O(X))@ (4.12) 

(Z~(X))@ = {Zo(X))@ ' 

� 8 9  = a + e  

lo•3 1 1 
+ ~e + ~ /~  _-> ~Ta.  

(4.13) 

(4.14) 

After some tedious algebra, the right-hand side can be reexpressed: 

4[{zA(x)za(y)) r - {zA(x)) | {zA(y)) r ] 

= ~ ( e  + fl + 1(7 + 6))  -( [~ (1(7  + 3) + 2g) + f i e -  73 ] . (4.9) 

We claim that the term in the square brackets above is nonnegative. To see this, we 
use the following FKG domination, as proved in Proposition A.4 of the Appendix: 

# @ ( -  I ZA(X)) >_-- #| I Z0(x)), (4.10) 
FKG 

where )~0(x)= 1 - Z A ( x ) -  ZB(x). As a consequence, we obtain 

(Za(y)  l za ( x ) )  @ >= (ZA(y)  l z r  | , (4.11) 
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Reversing the roles of x and y gives the analogous relation 

1 1 1 5 
~c~ 7 + c~e + ~fie _> ~ . (4.15) 

Equations (4.14) and (4.15) together imply the claimed inequality. We thus have 

(ZA(X)XA(Y)) @ -- (ZA(X))O (ZA(y)) 0 ~ O~ (Ot ~- fl q- l (7 + ~))~ �9 (4.16) 
\ z / 

Identifying 

1 
+ = 

z 
(4.17a) 

Clearly, for any y, 

Tox D Toy N Tyx. (4.19) 

So, using the FKG inequality (for the two-component measure), 

#| > #|174 (4.20) 

Hence, for y e( x with [y[ < Ix[, we can obtain a subadditive inequality, from which 
the desired result is immediate. [] 

1 
~(c~ + fi + 6) = (Z~(y)) | , (4.17b) 

we obtain the desired result 

I[(ZA(X)) + (Txy) < �9 (4.18) | 
ZA(X); ZA(Y)) 0 [] 

Corollary. Throughout the single-phase regtme, along the line of symmetry, the 
correlation length ~ defined by 

1 lim 1 - ~ -  Ixl-,~ ~ Iog(zA(O);zA(x))| 

exists. Here [x[ denotes the Euclidean length. Furthermore, the correlation length 
defined above is equal to the (similarly defined) correlation length for any of  

the other statistical mechanical or geometrical correlation functions listed in the 
statement of  Theorem 4.1. 

Proof By Theorem 4.1, it is sufficient to establish, for example, the existence of 

lim 1 
Ixl-~ ~ l~174176 
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Appendix. FKG Properties for the Widom-Rowlinson Model 

In this section, we establish FKG properties for the one- and two-component ver- 
sions of the Widom-Rowlinson model. Most of Proposition A.1 can be found in 
the references [LM, CGLM], where it was derived in the context of an equivalent 
spin model; however the present derivation has the appeal that it deals directly with 
the models at hand, and therefore suggests further results such as those in 
Proposition A.4. 

We begin with the lattice version of the one-component WR model. Let F C 71 d 
and let 0) c F denote a particle configuration. More formally, for each i E F, co(i) E 
{0, 1} corresponds to the presence or absence of a particle at the site i. If we regard 
the lattice as being immersed in IR a , then (with some attention paid to boundary 
conditions) we may define h(co)_--ha(co) exactly as in the discussion preceding 
Eq. (1.1). If fl, z, and a are positive real numbers, the finite volume one-component 

#| , measures WR measures, r;a,A~ are defined by assigning the weights 

#s Az(0)) oc (zeBV~ )l~ -Blu(~ . (A.1) 

It is noted that, due to the discreteness of the lattice, the measure defined by 
Eq. (A.1) is not exactly the measure that one obtains by integrating out the B 
degrees of freedom in the analogous two-component measure (see Eq. A.6 below). 

The following is readily established: 

Proposition A.1. For any finite F C 77 d and any positive real numbers fl, z, and 

a, the measures #~a,A~(-)  are FKG with respect to the natural partial order of  

{0,1 }F. 

Remark. We refer the readers who are unfamiliar with the basic notations and prop- 
erties of FKG measures to the expositions in [Gr] or [L]. The original references 
are [H] and [FKG]. 

Proof. It is sufficient to verify the so-called lattice condition, namely if COl 0)2 C l F' 
and col V 0)21i = max{0)l(i),0)2(i)}, and 0)1 A 0)21i = min{0)l(i),0)2(i)}, then 

~(0)1V 0)2)#(0)1A 0)2) ~ #(0)t)#(0)2). (A.2) 

Thus, given the form of the weights, we must show that 

[h(0)1 V 0)2)1 + ]h(0)a A 002)1 ~ jh(0)l)l + Ih(o-~2)l. (A.3) 

However, it is clear that 

h(0) 1V 0)2) C h(0)l U 0)2), (A.4a) 

while 

h(o~l A co2) = h(0)l f-) 0)2). 

Thus the desired inequality is immediate. [] 

(A.4b) 
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Next we treat the case of the two-component model. Again we restrict to some 
finite F C 2U, but here we have co C {-1 ,0 ,  +1 }r where, by convention, co(i) = -1  
indicates the presence of a B particle at the site i, co(i) = +1 an A particle at i, 
while co(i)= 0 means there is no particle at i. This notation suggests the partial 
order 

o)1 ~- co~ if Vi E F col(i) > co~l(i). (A.5) 

For co E { - 1 , 0 , + 1 }  r,  define d and cob by the condition co~(i) = 1 if co(i) = -1  
and zero otherwise (i.e. if there is a B particle at the site i E F)  and similarly 
for co a. As usual, we may also regard these configurations as subsets of F. Again, 
regarding F as immersed in IR a, we may define e(co ~) and e(co 8) exactly as in 
Eq. (2.4). For positive real numbers a, zA and zB, the two-component WR measures 
are defined on some finite F by the weights 

| "co) zfAIzlJI;g(e(co A) N c(co B) 0) (A.6) 
~ F ; a ,  zA , z~[  (X ~ . 

Proposition A.2. For any finite F C 2U and any positive, real numbers a, zA, zB, 

the measures #rW;a, zA,z~(-) are FKG with respect to the partial order described in 
Eq. (A.5). 

Proof We will again verify the lattice condition. If  col and 092 are configurations, 
then col./\ o92 consists of those A particles common to both configurations and all of 
the B particles of either configuration. A similar statement holds for o91 V co2 with 
the roles of A and B interchanged. It therefore follows that if col and 0)2 are allowed 
- in the sense that c ( (~)  n c(co 8) = 0 - then so are the configurations o91 V co2 and 
col/~ 0)2. Aside from the restriction to allowed configurations, the lattice condition 
holds as an equality. Thus the desired result is established. [] 

Remark. Since our proofs of the FKG inequalities involve the verification of the 
lattice condition, the results also follow for measures obtained by conditioning on 
any cylinder events. In particular, these results also hold for any boundary condition 
on 7/d \ F that can be constructed with a fixed particle configuration. This of course 
implies the obvious monotonicity properties for measures on increasing sequences 
of sets with maximal or minimal boundary conditions. 

Passage to the continuum limit is accomplished in a natural fashion. If A C IRa, 
we consider the lattices e2U and use the sets F~(A) =_ e7l a n A. The fugacities are 
rescaled by z~ --+ eazA, while a remains fixed and rl ~ earl. It is not hard to show 
(e.g. by the arguments of [CK]) that the limiting measures which emerge are just 
the one- and two-component measures introduced in Subsect. lB. Thus we arrive 
at: 

Corollaries. The one- and two-component WR continuum measures have the FKG 
property with respect to the continuum analogues of  the partial orders described 
above. 

Remark. As in the lattice cases, these corollaries hold for conditional measures that 
can be obtained by conditioning on any cylinder events. 

We now prove the FKG dominance relation that was claimed in Eq. (4.10). 
Note that this is not a completely trivial result since the indicator go(x) is not a 
decreasing function. To prove this relation, we will establish the analogous result 
on the lattice in finite volume, and then allow the relation to carry over to the 
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continuum limit. In order to obtain the relation on the lattice, we invoke a result o f  
[Ho] (a simple proof of  which may be fotmd in [L]): 

Theorem A.3. Let f2 denote a finite, partially ordered set and let # and v denote 
probability measures on f2. Then a sufficient condition for the FKG domination 
# > v is that 

FKG 

#(091 ~/ 092)F(091 /~ 602) ~ #((D1)F(092)  

holds for all 091,092 c f2. 

Using this, we obtain: 

Proposition A.4. Let F C Za with IF I < oc and let x E F. Define ZA(x) to be the 
lattice analogue o f  the indicator function defined in Eq. (4.1), and let gO(x)= 
1 - L~(x) - ZB(x). Then, for any fixed boundary condition on ~F, and for any 
positive, real numbers a, ZA and zB, the two-component conditional WR measures, 

#~,z~,~B(- ] ZA(x)) and #~a,~,~e(- ] Z0(x)), on { - 1 , 0 , + 1 }  r obey the FKG dom- 
inance relation: 

' '  ' FKG ' ' ' 

Proof We will use Theorem A.3 above. To this end, let us write the weights of  the 
configuration 09 = (09A,098) E f2 as 

--zlm~lzlJl'zer09A'Ae(09 B) 0)ZA(x;09), (A.7) I w A ( 0 9 )  = A B z t  t J = 

and similarly for #~a, zA.zB(-- I Zo(X)) O( W0(09 ). By Theorem A.3, it suffices to es- 
tablish that for all 091,092 E f2, we have 

WA(09 1 V 092)W0(09 1 /~ 0)2)  ~ WA(091)Wo(092) , (A.8) 

since the constants of  proportionality appear on both sides o f  the desired inequality. 
Similarly, we need not consider the multiplicative factors involving ZA and zB. 

We have already demonstrated the necessary inequalities for Z ( e ( d ) A  
e(09 B) = 0) in Proposition A.2. Furthermore, because )~A(x; 09) is increasing, it is 
clear that for any 096092 C O, if ZA(x;091) --- 1, then ZA(x;091/k 092) = 1. However, 
a similar statement does not hold for Zo(x, 09) for all 091 and o)2. However, if  091 
satisfies Za(x; 091 ) = 1 and Z(c(091A ) N c(09f) = 0), the "covering" of  x by the A-core 
centered at some y E e(x) prevents c o l ( J )  = - 1  for any other y~ C c(x). Thus, for 
all y in e(x), 091 C {0,+1}.  Combining this with the constraint Z0(x,092) = 1, we 
see that for all y in c(x), 091/~ 0921y = 0. This gives the inequality (A.8), and hence 
the desired result. [] 

Note added in proof. After completion of this work, we learned about other related work by various 
groups. In particular, Klein [K] had already proposed our "gray representation" of generalized 
continuum percolation in 1982; that a special case of this representation is equivalent to a WR 
model was noted by Given and Stell [GS]. We are indebted to H.-O. Georgii for pointing out 
these references to us. Also, in recent independent work, Georgii [Ge] and Giacomin, Lebowitz 
and Maes [GLM] have used ideas similar to ours to derive results essentially equivalent to those 
in Sects. 2A and 2B. 
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