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Abstract. The d-dimensional, nearest-neighbor disordered Ising ferromagnet:

is studied as a function of both temperature, T, and a disorder parameter, λ,
which measures the size of fluctuations of couplings J^ ^O. A finite-size scaling
correlation length, ξf(T, λ), is defined in terms of the magnetic response of finite
samples. This correlation length is shown to be equivalent, in the scaling sense,
to the quenched average correlation length ξ(T,λ)9 defined as the asymptotic
decay rate of the quenched average two-point function. Furthermore, the
magnetic response criterion which defines ξf is shown to have a scale-invariant
property at the critical point. The above results enable us to prove that the
quenched correlation length satisfies:

C\logξ(T)\ξ(T)^\T-TcΓ
2ld,

which implies the bound v ̂  2/d for the quenched correlation length exponent.

1. Introduction

The behavior of the correlation length exponent for disordered systems has been a
subject of interest for some time. In 1974, Harris [2] suggested a simple criterion to
determine whether or not the critical behavior of a given system is affected by a
small amount of disorder. He argued that if the correlation length exponent, vp, of a
d-dimensional pure (uniform) system satisfies the bound vp > 2/d, then disorder is
irrelevant in the renormalization group sense and thus should not change the
critical behavior. A natural generalization of Harris' result (which does not,
however, follow directly from his line of argument) is that in all disordered systems
with continuous transitions, the correlation length exponent ought to satisfy the
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This should hold independent of whether or not the critical behavior is the same
as in the uniform system, and indeed even when the system does not have a uniform
analogue (e.g., disordered electronic systems [3]). However, the general appli-
cability of the bound (1.1) does not appear to have been widely anticipated.

A number of works on random exchange Ising magnets have supported (1.1).
Calculations in both two [4] and higher [5] dimensions yield results satisfying
(1.1); in d = 2 the bound is saturated. An appropriate modification of (1.1) for
magnets with long-range correlated bond disorder was derived by Weinrib and
Halperin [6].

Recently [1], we considered a broad class of disordered systems with
independent randomness characterized by some disorder (e.g., impurity con-
centration) parameter, λ. We defined a probabilistic finite-size scaling correlation
length, ξf, and proved that when the system passes through a critical value, λc, of
the disorder parameter - as signaled by the divergence of ξf - then ξf

^(const)|/l — λc\~2/d. This implies the bound (1.1) for the exponent v.

The conditions of the theorem in [1] allow a broad spectrum of choices from
which one may select (or construct) a correlation length ξf; furthermore, if one has
any faith in universality, the particular choice of ξf should be unimportant.
However, from the mathematical point of view, this faith requires substantiation.
Indeed, most systems have a natural, intrinsic correlation length ξ, typically given
by the asymptotics of an appropriate two-point function. In order to prove that the
correlation length exponent associated with ξ satisfies the bound (1.1), it is
sufficient to show that

(a) there is a critical point λc at which some ξf diverges continuously, and

(b) C\logξ\ξ^ξf as λUc
Unfortunately, at present, the only system in which this has been completely
verified is d-dimensional short-range percolation (for which it follows from
Proposition 3.2 of [7]).

The principal purpose of this paper is to extend the more complete analysis to
disordered Ising ferromagnets. Thus we consider systems specified by the (formal)
Hamiltonian

*=- Σ Ji/rPj, (1.2)

where the sum is over all nearest-neighbor pairs (bonds) of the d-dimensional
hypercubic lattice, σ{ — +1 are the usual Ising spins, and the ferromagnetic
couplings Jij^O are i.i.d. variables with distribution ρ. We will treat a rather
general class of distributions, which includes in particular the physically interest-
ing case of dilute ferromagnets. (For a precise specification of the allowed ρ, see
Sect. 3.)

An intrinsic correlation length for the disordered Ising ferromagnet is the
quenched correlation length, ξ, defined in the high-temperature phase as the
exponential decay rate of the quenched two-point function: informally

< σ o σ x > ~ e - l ^ , (1.3)

where < > denotes the thermal expectation, and the overbar denotes quenched
averaging - i.e., averaging with respect to the bond disorder distribution. Thus ξ ~ *
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= — lim |x| 1log<σ0σJC>. A priori there is an alternative intrinsic correlation

length, ζ, which determines the typical decay of correlations. This is defined by ξ~1

= — lim |x| ~ ι log <σoσx>, with probability one. While it is clear that ξ^t ζ, it is not
χ-> oo

known under what circumstances the scaling behavior of ξ and ζ are the same.
However, it is the quenched averaged correlation function (1.3) which is measured
in scattering experiments, and therefore ξ is the relevant correlation length.
Henceforth, we will take (1.3) as our definition of the intrinsic correlation length.

As mentioned above, there are many possible definitions of a finite-size scaling
correlation length. For disordered Ising ferromagnets, we construct one such
length, ξf, in terms of an event which measures the magnetic response of large
cubes. The crux of this paper (Sect. 4) is a proof that ξf is equivalent, in the scaling
sense, to the fundamental correlation length ξ:

ζ r — <ξ<c3ξf + c4, (1.4)

where the ci are positive, finite constants. Given this equivalence, we establish, via
finite-volume continuity, the existence of a bona fide critical point, i.e., a point
where the correlation length diverges continuously. The inequality (1.1) can then
be obtained for the fundamental v from the lower bound in (1.4) and the theorem of

[1]
The rest of this introduction is devoted to possible extensions of (1.1), and the

remainder of the paper is organized as follows:
In Sect. 2, we will briefly review our previous theorem. The proof given in [1]

was for systems with disorder distributions of a percolation-like form, in which the
phase transition is approached by varying the disorder parameter, holding other
parameters fixed. However, as was mentioned in [1], the result also applies to
systems with fixed smooth disorder distributions, in which the phase transition is
approached by varying an additional parameter (e.g. temperature in disordered
magnets or energy in disordered electronic systems). The extension to these cases is
not difficult: the details are provided in Sect. 2.

In Sect. 3, we will give precise definitions of random Ising ferromagnets, derive
some basic (infinite-volume) properties of these systems, and define, for the single
phase regime, the quenched correlation length.

In Sect. 4, we will construct our finite-size scaling event, and establish
equivalence of the resulting length scale and the quenched correlation length. We
will then prove criticality of the transition, from which the bound (1.1) follows. The
more technical aspects of the proof of the equivalence between ξf and ξ are
relegated to an appendix.

li. Extensions to Systems with Correlated Disorder. Weinrib and Halperin [6] have
considered the effects of correlations in the disorder, i.e., for the case of
ferromagnets, in the {J^}. Short-ranged correlations are not expected to affect the
results, provided the transition remains continuous. However, if the correlations
are long enough ranged that the variations in the {J^ } over cubes of size L are of
order L~ά/2 for large L, with ct< d9 then stronger inequalities than (1.1) should hold.
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In particular, we expect [6]

v - τ (1 5)

Indeed, Weinrib and Halperin [6] argue that for positive correlations of the {J^}
decaying as a power of \i—j\, Eq. (1.5) should hold as an equality. Extensions of our
rigorous results for finite-size scaling correlation lengths to this case may well be
possible.

Another interesting case is when the couplings depend not on all d coordinates,
but only on a subset dR < d of the coordinates, while the system is uniform along
d — dR dimensional hyperplanes. For disordered Ising ferromagnets, such systems
turn out to be rather pathological. Nevertheless, if a continuous transition occurs
with a diverging finite-size scaling correlation length in the random directions, ξfR,
the natural expectation is that the associated exponent will satisfy

v ^ . (1.6)
dR

Exact results for the random Ising ferromagnet with d = 2 and dR = \ have been
obtained [8, 9]. In particular, the exponent of the typical correlation length is
found not to satisfy Eq. (1.6). However, as discussed in [10], the quenched
correlation length seems to satisfy the bound (1.6) as an equality. Although this
model is rather peculiar, and its behavior is not yet entirely understood, one
certainly should be cautious in attempting to infer too general conclusions about
relations between various possible correlation lengths from the results of this
paper.

2. Correlation Length Bounds for General Disordered Systems

Here we review and slightly extend the results of [1]. The reader is referred to the
original reference for more details and, particularly, for explicit examples.

The generality of the result in [1] followed from noting that, independent of the
specific properties of a particular disordered system, the underlying randomness
could be introduced in such a way as to define a percolation-like problem. Then if
we examine only the behavior of the sample configurations (e.g., as a function of the
disorder parameter), certain natural questions arise analogous to those for the
percolation transition. In particular, in the context of disordered systems
undergoing continuous transitions, one is immediately led to define length scales
within which events characterizing the critical behavior are likely to occur and
beyond which they will be rarely observed. At the critical point, some such events
should be likely on all scales. This suggests that the largest scale at which such an
event typically occurs should be identified with the correlation length of the
system.

To make explicit the connection between a general disordered system and
percolation, we took the disorder distribution to be describable as a convex
combination of two distributions:

λ)ρ2. (2.1)
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Thus the disorder parameter λ is analogous to a bond or site density in percolation.
For example, in disordered Ising ferromagnets, ρί and ρ2 could simply be
^-functions at distinct couplings. However, in general, ρ1 and ρ2 need not describe
pure systems, so that even the points λ — 0 or λ = 1 may be genuine disordered
systems. Nonetheless, it was supposed that a critical transition occurred at some λc

with

Q<λc<\. (2.2)

It was further supposed that the transition could be characterized by a sequence of
events, ( J / L ) , occurring in volumes of scale L such that:

at λc, on all scales, Probλc(j^L) ^ c, (2.3)

while for λ < λc, lim P r o b ^ ) = 0. (2.4)
L->oo

Thus

ξf(λ) = max{L| P r o b ^ ) ^\c) (2.5)

may be identified as a finite-size scaling correlation length. The result of [1] is:

Theorem 2.1 [1]. Under the conditions (2.1)-(2.4),

ξf(λ)^C\λ-λc\-2/d (2.6)

uniformly in a neighborhood of λa

ι with C a constant.

2
Given the conventional definition: ξj-(λ)~\λ — λc\

 v, this is the bound v ^ —.

Note that although the above theorem is rather general, it does require that: (1)
the disorder distribution be expressible as a convex combination of two other
distributions; and (2) the phase transition be approached by varying the disorder
(convex mixing) parameter. Although, by universality, one would argue that
neither of these restrictions should change the nature of the critical point (and, in
particular, the bound on v), an explicit demonstration of this claim may be useful.

Now suppose we have a disordered system with a fixed smooth disorder
distribution, ρ, and that we wish to approach the critical point by varying an
additional parameter (e.g. the temperature in disordered magnets or the Fermi
energy in disordered electronic systems). For brevity of notation (at the possible
expense of confusing the reader), we will call this additional parameter λ, although
here λ is to be though of as a temperature or energy variable. Then, given the
disorder distribution, ρ(x), we can define a new distribution, ρλ(x\ which scales
with the additional parameter λ. In disordered magnets, where the couplings are
multiplied by the inverse temperature β, the appropriate scaling is multiplicative:
ρλ(x) = λρ(λx). In disordered electronic systems, where the random potentials are
determined up to an additive energy factor (the chemical potential), the
distribution should be scaled additively: ρλ(x) = ρ(x-\-?,).

1 In cases where (2.3) only holds for a sparse sequence of lengths, (2.6) holds on a sequence of λ's
converging to λc. One still gets v ̂  2/d, where v is defined via a superior limit
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In either case, we again expect that there should be a length scale characterizing
the transition, and that this length scale should be expressible in terms of the
probability - with respect to the scaled distribution ρλ - of a sequence of finite-size
scaling events. Thus we will again assume (2.3)-(2.4), which thereby allows us to
define the finite-size scaling correlation lengths (2.5). Now, however, rather than
requiring a disorder distribution of the form (2.1) and the existence of a non-trivial
critical point (2.2), we require only a smoothness condition on the (unsealed)
disorder distribution: Explicitly, we suppose that

M ={χ2^~^dx<oo (2.7M)
ρ(x)

for multiplicative scaling, or

Ae^S^fdx<*> (2.7A)

for additive scaling. We have

Theorem 2.2. Suppose the disorder distribution ρeC2 is a density supported on all
of R or all of R + , and that it satisfies either condition (2.7M) or condition (2.7A).
Further suppose that there is a sequence of events ( J / L ) such that (23)-(2Λ) hold
with respect to the multiplicatively or additively scaled distribution: ρλ(x) = λρ(λx)
or ρλ(x) = ρ(x + λ). Then the conclusion of Theorem 2.1 holds.

Theorem 2.2 is an easy consequence of the following lemma.

Lemma 2.3. Suppose ρeC2 is a probability density supported on all of R or all of
R + , satisfying (2.7M) or (2.7A). Let Xl9 ...,XN be random variables independently
distributed according to ρ, and let F(Xl7 ...,XN) be a bounded function of these
variables. Let ρλ(x) be a one-parameter family of scaled densities: either ρλ(x)
— λρ(λx) or ρλ(x) = ρ(x + λ), and let Eλ denote the corresponding expectation. Then

dλ

where lρ = Mρ or Iρ = Λρ as given by (2.7).

Proof of Theorem 2.2 (given Lemma 2.3). According to the proof of Theorem 2.1 in
[1], the key ingredient is to show that if Y is an event depending on N i.i.d.
variables with distribution parameterized by λ, then (d/ίU)ProbA(7)^α]/]V with
oc = oc(λ) e.g. continuous in λ. Thus we simply take F in Lemma 2.3 to be the
indicator function of the event Y. •

Proof of Lemma 2.3. For simplicity, we will treat only the multiplicative case; the
additive case follows from an identical argument. We write

Eι(F)=ίF(xι,...,xN) Π Qx(Xj¥Nx, (2-8)
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so that

507

dλ

Taking absolute values,

dEλ(F)

'dλ1

(2.9)

dλ

We use the Holder inequality to obtain

dEλ(F)

dλ
/ Γ

1 +

^(xρ(x))dx)2 = 0,

(2.10)

(2.11)

(2.12)

(2.13)

Remark. Recall that the principal purpose of this paper is to show that the
quenched correlation length, ξ, of disordered Ising ferromagnets obeys a bound of
the form ξ>\λ — λc\~2/d (where > permits modifications of inequalities by
constants and logarithms). For future reference, note that by Theorem 2.1 (or
Theorem 2.2), it suffices to find a sequence of events ( J / L ) such that: (1) the ( J / L )
define a critical point λc at which they have the scale invariance property (2.3); and

The off-diagonal terms do not contribute because

(ίίρ(x) + xρ'(x)']dx)2--

while the N diagonal terms each contribute

(2) the ξf defined by
d

satisfies oo > ξ > ξf for λ < λc. As we will see, for
disordered Ising ferromagnets, it is relatively easy to demonstrate ξ > ξf. What is
more difficult is to establish the existence of a critical point; for this, we first prove
ξf > ξ and then exploit the continuity of finite-volume probabilities.

3. Disordered Ising Ferromagnetis: Definitions and Preliminaries

In this section, we define the disordered Ising ferromagnets and derive some basic
infinite-volume results, including existence and properties of the quenched
correlation length ξ. A tool we will use in proving these results is the interacting
percolation representation of Ising (and Potts) models introduced by Fortuin and
Kasteleyn [11] (hereafter referred to as FK). This representation is briefly reviewed
in Sect. 3ii, after which we derive general infinite-volume properties (in Sect. 3iii)
and those that pertain specifically to the correlation length (in Sect. 3iv).
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3i. Definition of the Model Consider the nearest-neighbor disordered Ising
ferromagnet with Hamiltonian:

<ίj>

where the sum is over all nearest-neighbor pairs of Zd, σie{ — 1, +1} are Ising
spins and Jtj Ξ> 0 are ferromagnetic couplings. Of course, even for a fixed realization
{Jij} of couplings, (3.1) is a formal object. To be precise, we must consider a finite
set ΛcΈd, and set to zero in (3.1) all Jtj with both endpoints in Ac = Έd\A. Let us
denote by ΈΛ the set of all bonds with at least one endpoint in A, and by Ω = Ω(Λ)
= {^ijKU')elByi} t n e realization of couplings. Then for each fixed spin configu-
ration σdΛ on dΛ ( = the set of points of Λc with a neighbor in A), we may define the
finite-volume Hamiltonian J^Λ(σΛ;σdΛ;Ω) for any spin configuration
σΛe{ — l9+ l} | y11 in A. The probability measures on {-1, + 1}MI with the weight
of any σΛ proportional to exp[ — ̂ Λ{σΛ; σdΛ; ΩJ] are the finite-volume Gibbs
measures; from these, the relevant infinite-volume measures may be extracted.

Thus far, we have discussed the Gibbs measures for a fixed realization Ω — {Jtj}
of couplings. Henceforth, we will take the Jtj to be i.i.d. random variables with
distribution ρ(Jί>7 ) for any given bond. The product measure on ΊBΛ is given by

P(DAΩ)= ΓΊ QVij) ( 3 2)
<iJ}eBΛ

We will consider only ferromagnetic distributions, i.e. Prob e[J f J-<0] =0. It turns
out that we must put a few additional (mild) conditions on the distribution ρ. These
conditions are required to ensure monotonicity of the correlation length, and are
discussed explicitly in the Remark preceding Proposition 3.5 in Sect. 3iv.

In the random spin systems, it is natural to consider quenched averages for
functions of spin configurations: Let A(σΛ) be any (bounded) function of the spin
configurations in A. For fixed boundary conditions, σdΛ, and fixed sample of
couplings, Ω = {Jij\{iJ}e]BΛ}, the thermal expectation of A is simply:

σ9ΛtΩ = ZAtσβΛtΩ Σ e x p [ - ^ ( σ Λ ; σdΛ; Ω)]A{σΛ), (3.3)

where ZΛσgΛΩ is the appropriate partition function.
The quenched expectation of A is then given by averaging the thermal

expectation with respect to the coupling distribution

Φ>Λ.β.Λ.β=l<A>Λ.σ.Λ.oP(DΛΩ). (3.4)

Remarks, (a) For notational convenience, we have absorbed the usual factor of
β( = l/kBT) into the Jtj. Thus all temperature dependence will be tracked through
the distribution, ρ, of coupling strengths.

(b) For the purposes of expositional clarity, we will omit any explicit reference
to the so-called "random site" problem, in which the Ju are given by

Jij = Wj, (3.5)

with the {τj a collection of i.i.d. random site variables. The generalization of our
results to these problems requires only the substitution of the word "site" for the
word "bond" at appropriate points in the derivation.
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3ii. The FK Representation. In [11], Fortuin and Kasteleyn introduced a
representation for the Ising (and general g-state Potts) spin systems which
illustrated the close connection between these problems and independent
percolation. Recently, this representation has proved useful in the context of both
uniform and disordered ferromagnets [12,13]. The reader is referred to [12] for
more detailed discussions of what follows.

First we define the bond configurations. Again let ΛcZd be a finite set and
denote by B^ the set of all bonds with at least one endpoint in A. A configuration
ω = ω(Λ) on ΈΛ consists of a number ωtj e {0,1} assigned to each <ί, j> e B^. When
ω f j = l , the bond is said to be occupied; otherwise it is called vacant. When
convenient, ω(Λ) may be viewed as a subset of B^.

For the pure bond percolation problem, the bonds are assigned independent
occupation probabilities p o e[0,1], which are usually taken to be uniform (i.e.
Pij ΞΞ p). Thus the probability of observing ω is given by

Prob(ω)= Π PuιJV-Pij){1~ωιj) (3 6 )

Fortuin and Kasteleyn discovered that Ising ferromagnets with couplings
{Jij\<^i,jy EΊBΛ} generate a percolation-like problem with weights

iT(ω)oc Π p?JHl-piJ)
ιl-ωW\ (3.7)

< ϊ . J >

where c(ω) is the number of connected components of ω and the ptj are given in
terms of the Jtj by

Pij=ί-e-J". (3.8)

The quantity c(ω) may be defined in a number of distinct ways depending on
the boundary conditions. Of relevance here are the free boundary problems, where
one simply counts the number of connected components, and "wired"
problems, where one identifies all clusters attached to dA as part of the same
connected component. These correspond to free and "plus" boundary condi-
tions, respectively, in the original spin system.

When the pu are constant, (3.7) provides a representation of the uniform spin
system. However, there is no difficulty in posing the FK random cluster problems
against a background where the ptj are themselves random variables. Thus, in
finite volume, we may take a given realization Ω of the ptj (or J^ ), and construct -
according to the weights in Eq. (3.7) - the FK free or wired measures. These will be
denoted, respectively, by μΛ>f Ω( —) and μΛ> W>Ω( —). The quenched expectation of a
random cluster event, J / , is again defined by averaging over the coupling
distribution; as before, these expectations will be denoted by overbars:

βΛtU^)=iμΛ.iA^)P(DΛΩ)9 (3.9)

where i = free (/) or wired (w).
It turns out that various correlation functions in the spin system correspond to

FK probabilities of certain events. Indeed, in [12] it was observed that if
f(σa, ...,σz)is any local function, then </>yin,/,β0' = " + " or free) may be expressed
as sums and differences of wired or free FK probabilities of the events that various
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subsets of the sites {a,...,z} belong to the same connected component. For
example, the spin-spin correlation in finite volume is given by

<σ xσ y> i l t i ϊ Ω = μ i i>i fO(x is connected to y). (3.10)

Moreover, it has been shown [7, 12] (following [17]) that, with probability one, the
spontaneous magnetization is equal to

m(ρ)= lim -~ £ O ^.+.βΞΞ lim — £ μΛt w,Ω{i is connected to dA). (3.11)
TL* \A\ ieΛ Λ\Έ* \A\ ieΛ

3iii. FKG Properties and Infinite-Volume Limits. In finite volumes, with specified
boundary conditions, the quenched measures fiΛj,e{ — ) and ζ—)Λti,ρ are well-
defined objects. Here we review the notion of FKG monotonicity [14], and use this
monotonicity to establish the existence of infinite-volume limits.

Definition. (FKG Ordering, Measures and Domination): If vvx and w2 are
"configurations" which assign a number w^ij}), w 2 « U ) ) t 0 e a c h bond of the
lattice, we say that

w,>w2 (3.12)

if for each ( i j ) , w 1 « / , j » ^ w 2«/,j». This defines a partial order on the space of
bond configurations. A function which is non-decreasing with respect to this
partial order is said to be positive. An event is said to be positive if its indicator
function is positive. A measure v is said to be an FKG measure if for every pair of
positive functions, / and g:

v(/g)^v(/)v(g). (3.13)

If vι and v2 are two measures, we say that v1 FKG dominates v2, denoted by

v1 ^ v2, (3.14)
FKG

if for every positive function g:

(g). (3.15)

It turns out that both simple product (e.g. percolation) and the interacting FK
random cluster measures are FKG.

Lemma 3.1a [15]. Bernoulli measures are FKG.

Lemma 3.1b [11,12,14,16]. For any fixed realization, Ω, the I sing random cluster
measures in finite volume with free or wired boundary conditions are FKG.
Furthermore, for finite sets Al9 A2C%d with A1jΛ2, the free boundary random
cluster measures, μΛufίΩ{ — ) and μΛ2,f,Ω( — ) satisfy

HAufA-) = J"VI2,/,Ω(-)>
FKG

while the wired random cluster measures, μΛuWfΩ( — ) and μΛ2,w,Ω( — ) satisfy the

opposite inequality

FKG
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With the above in mind, one can easily establish the existence of various
infinite-volume measures:

Theorem 3.2a [11, 12, 14, 16]. For any fixed realization, Ω, infinite-volume limits
exist for the free and wired boundary Ising random cluster measures, and for the free
and plus (or minus) boundary Ising spin measures.

Theorem 3.2b. For the four systems specified above, infinite-volume limits exist for
the quenched measures. Furthermore, infinite-volume limits and disorder averages
may be commuted.

Proof. The existence of quenched measures follows easily from monotonicity (in
the volume) of the quenched probabilities of positive cylinder events. The fact that
one may commute infinite-volume limits and disorder averages is a consequence of
the monotone convergence theorem. •

Before turning to the correlation length in the high-temperature phase, let us
show that we can ignore boundary conditions in that phase. As usual, the high-
temperature phase is defined by the vanishing of the spontaneous magnetization
(3.11). The statement we need is essentially contained in [12], where it is shown
that whenever the magnetization vanishes, the limiting Gibbs state (or correspond-
ing infinite-volume FK state) is unique. Noting that m(ρ) can also be obtained via
quenching (as shown e.g. in [7, 12, 13]):

m(ρ) = (σo}+ρ = μwρ(0 belongs to an infinite cluster), (3.16)

and that infinite-volume limits and quenching commute, it follows that:

Theorem 3.3. For random Ising ferromagnets with independent disorder, and the
associated random cluster models, whenever m(ρ) = 0, with probability one, the
limiting infinite-volume state is unique. Furthermore, m(ρ) = 0 also implies uniqueness
of the quenched infinite-volume measure.

3iv. Existence and Properties of the Correlation Length. With the results of the
previous subsection in mind, the existence and general properties of the quenched
correlation length are readily established.

Proposition 3.4. Let <( — >ρ denote the (unique) infinite-volume quenched spin
measure in the single-phase regime. Then the limit

- -vrτ = lim —
ξ(Q) x-oo \x\

exists for any sequence of points along a coordinate axis. Furthermore,

holds uniformly in x; or, in general,

where \\x\\ ^maxjlxj, . . . , |xd|}.
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Proof. Let x, yeΈd. Then, for each configuration Ω,

this is either the 2n d Griffiths inequality or the FKG inequality in the FK
representation. For either reason, both (σoσx) and {σyσx} are P-increasing
functions; hence, by the FKG inequality,

(3.18)

The desired results now follow from standard subadditive arguments (see e.g.

[18]). D

Remark. In order to ensure that a critical point exists, we will need monotonicity
and continuity properties of the correlation length. As shown below, these in turn
are guaranteed by FKG domination of measures as a function of the parameter by
which we approach the transition. If ρx and ρ2 are single-bond measures for the
spin system, it turns out that the necessary and sufficient condition for the
associated product measures to satisfy Pι ^ P 2 is that the inequality

FKG

(3.19)

hold for all x. Thus if the Jtj are given in terms of "physical" couplings ftj and a
temperature parameter β:

Jij = βfij, ( 3 2 0 )

then increasing β (holding the distribution of the βVj fixed) increases, in the sense of
FKG, the coupling distribution. Now suppose that we intend to approach the
transition by varying the mixing (disorder) parameter of a convex combination of
two (single-bond) measures. Then, provided that one single-bond measure FKG
dominates the other, we obtain FKG domination of the product measures as a
function of disorder. Thus, in the latter case, we will require that the two single-
bond measures in the convex combination have an FKG dominance relation.

Proposition 3.5. Let (ρa \ oc e 1R) be a one-parameter family of measures. Suppose that
(ρa) is continuous in the sense that for each interval [α, fr] C[0,1]

lim Probα(p e [α, b]) = Probβ0(p e [α, b]).
α-* α 0

Further suppose that whenever oooc'

Qa ^ Qa'
FKG

Then ζ~ι{ct) is a monotone non-increasing, left-continuous function.

Proof. Monotonicity is obvious from the FKG inequalities. Continuity follows
from a standard one-dimensional construction (i.e. calculating ξ in LdlxZ
strips). Exploiting monotonicity in the volume (of the type described in
Lemma 3.1b) and continuity of finite-volume probabilities (which follows from the
above continuity hypothesis), this construction expresses ξ"1 as the decreasing
limit of continuous decreasing functions, which is therefore left-continuous. For
more details, see e.g. [18]. •
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4. Correlation Length Bounds for Disordered Ising Ferromagnets

4i. Construction of the Finite-Size Scaling Event. At low temperatures, when there
is positive spontaneous magnetization in the infinite-volume system, finite
volumes will align according to the spin configuration at the boundary. On the
other hand, in the high-temperature phase, the statistical behavior of large blocks
should be relatively insensitive to boundary conditions. We will consider cubes

CL = {xeZd\\\x\\^L}9 (4.1)

and, for fixed Ω, study the finite-volume Gibbs measures < — >c^ + Ω. At sufficiently
low temperature, one would expect that, with probability close to one, the inner
portion of the cubes will magnetize. Thus we define the magnetic response (of the
inner portion of the cube C 3 L):

ML(Ω)=I Σ σλ . (4.2)
\ieCL /C3L,+,Ω

It is in fact easy to show that when m(ρ) > 0, ML(Ω) is typically of the order of Ld.
On the other hand, when the correlation length is finite, one envisions that ML(Ω)
will tend to zero exponentially fast in L.2 It is therefore natural to define the finite-
size scaling event

i}, (4.3)

and hence

α2} (4.4)

with ax and a2 constants of order unity. Recall that P denotes the probability with
respect to the product measure (3.2).

4ii. Equivalence of Correlation Lengths. The principal result of this section will be
to demonstrate that ξf« ξ. Explicitly, we will show that

ξfiρ) ^ξ(ρ)^cξ(ρ) + c (4.5)

with the Cj uniform. Our particular choice of constants turns out to be

This, however, is a function of the details of our proof. The actual critical scaling of
ML(Ω) undoubtedly involves powers of L; our inability to characterize precisely
the critical behavior is, to some extent, reflected in the logξj on the left-hand side of
Eq. (4.5). It is worth noting that upper and lower bounds of the form (4.5) without

2 If the transition is first order (which we will later rule out for the Ising case), at the point where the
high- and low-temperature phases coexist, ML will scale like Ld, despite the fact that ζ is finite.
Presumably, this happens in the g-state Potts models in high enough dimension when q>2



514 J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer

the modification by logs have recently been obtained for the case of two-
dimensional percolation by Kesten [19].

Remark. At high enough temperature, the condition P(^L) > a will fail for all L. In
this case, we will define ξf (and ξf/logζf) to be zero. Hence, if ζ<ζ 1, one should not
take the equivalence of ξ and ξf too seriously. Fortunately, in these regimes,
expansion techniques provide quite efficient algorithms for computing ξ (see [20]).

The easy half of the equivalence is a consequence of the following.

Proposition 4.1. P(ML)^ [Const]L [2d~ ̂ e~
L/ξ with Const (unimportantly) equal to

Proof. Suppose that for some finite AdΊLd and fixed realization, Ω, we wish to
compute (κoi}Λ + Ω for ieA. Let us define A by identifying all jedΛ as a single
site. On this site, we place an Ising spin, §, which couples to all the neighbors keΛ
of the j e dA with strength Jkj. For a small d = 2 lattice, this is illustrated in Fig. 1.
Denoting by < — ) Λ Ω the measures in these "wired" lattices, it is not hard to see that

< ^ , + i O = <σ iS> i l f f l. (4.7)

Denote by djΛ the internal boundary of A (i.e. the sites in A with neighbors in dA).
Then, by the Lieb-Simon inequality [21, 22],

/ ( Q \ ^ y / rc \ //τ*S\ <Γ V / rr \ (A. S£\

kediΛ kediΛ

Note that in the final expression, expectations are evaluated with free boundary
conditions. However, for any Ω, <σίσk>yl>y jβ does not exceed the corresponding
average in the infinite-volume limit. Thus, by Proposition 3.4, in the single-phase
regime

<fi>Λ. + ^ Σ e-'1*-'1"*. (4.9)
kedΣΛ

Applying (4.9) to ML= £ ζ^)c3L, +» t n e desired result follows. Π

a + + + + + + + + b

Fig. la and b. A wired lattice (a) and its equivalent representation (b)
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Corollary. There are constants cx and c2 such that the correlation length ξf satisfies

cί\ogξf + c2

in the single-phase regime.

Proof. If ξf is zero or ξ is infinite, there is nothing to prove. Otherwise, at the scale
ξf, by definition:

ξ f , (4.10)

so that

Mξf>a2. (4.11)

Thus

lConst]ξ[

f

2d-ί]e-ξflξ^a\ (4.12)

and the result follows easily with the constants cx and c2 as given in Eq. (4.6). •

Remark. Although straightforward, the preceding relied on the Lieb-Simon
inequality [21,22], which does not hold for general spin systems. We require both
the lower bound on ξ and the upper bound proved below to establish, for these
systems, the continuous divergence of ξ, and hence the existence of a critical point
for the ( J / L ) . Although somewhat more difficult, Theorem 4.2 can, in fact, be
established e.g. for the g-state Potts models and, perhaps, in even greater
generality. Such results are, however, worthless without an analogue of Proposit-
ion 4.1 and its corollary.

We now attend to the major task of this section.

Theorem 4.2. The correlation length ξf satisfies

in the single phase regime.

Remark. At the core of our proof is the fact that the quenched expectation of a
certain event obeys a rescaling inequality of the sort introduced in [23].
Unfortunately, this event, which is defined naturally in the FK representation,
does not admit a particularly transparent formulation in the spin language. We
will thus define the event below, and state the rescaling lemma - relegating the
proof of the lemma to the appendix. Assuming the lemma, we may proceed with a
relatively succinct proof of Theorem 4.2.

Let Ω denote a fixed coupling configuration and consider the regions

5 L = {x6Z d | | x 1 | , . . . , |x d _ 1 | ^12L; |x d | ^3L}. (4.13)

We will be interested in the FK wired measures on BL, μBL,w,Ω(~)• Although the
wiring will occur on BL, the events that will concern us will take place in the inner
box {\Xi\,..., \xd- xI ̂  6L; \xd\ ^ 3L}. If ω is a random cluster configuration in Bu we
will say that the event J £ occurs if there is no crossing by the occupied bonds of ω,
which lies entirely within the inner box, and which extends from any of the sites on
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Fig. 2. The rescaling event and its complement

the "bottom face": {{x^,..., | x d _ 1 | ^6L; | x d |= — (3L—1)} to any of the sites on the
"top face": {\xι\,...9\xd_ί\<L6L; \xd\= +(3L-1)} . The use of FK bonds is
obviously a better choice for describing the complementary event JV£. To
more concisely describe J£, we use the well-known duality: for each vacant bond,
we will occupy its corresponding (d— l)-cell on the dual lattice. If we endow
these dual cells with the standard connective properties, i.e. two (d— l)-cells are
connected if they have a common (d — 2)-cell in their boundaries, the event JVL

may be defined as follows:

= {ω|there is a sheet of dual (d— l)-cells in the region

which separates xd^—3L from xd^ +3L} .

The events JΓL and JV£ are illustrated, for d = 3, in Fig. 2.
The rescaling lemma may be stated as follows:

Lemma 4.3. Let oc< 1, and suppose that for some L

(4.14)

Then at scale 2L

Proof. See appendix.

From this, it is not difficult to prove the equivalence of ξf and ξ.

Proof of Theorem 4.2. We assume that ξf<oo (otherwise we are done), and
denote by L* any length larger than ξf (e.g. L* = ξf+ί). At scale L*, we have, by
definition,

(4.15)

—), the wired

= {ω| there is no crossing between CL and dC3L by occupied bonds}, (4.16)

We claim that this implies μBL*,w,ρ(-^D^1ί-e ^ d-
Indeed, let Ω be a coupling configuration and consider μC3^,w

FK measures on the cubes C3L*. Let us denote by ^L the event
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a b

Fig. 3. a The event £fL. b Translates of <fh

1

24L

or dually

^ L = {ω| there is a surface inside C 3 L which separates CL from dC3L} (4.16')

(see Fig. 3a).

By subadditivity, it is seen that

l~μc3I>,w,Ω(^L*)= Σ μc3I,*,w,β(* i s connected to <9C3L)

= Σ <<?i>c3L*,+,Q = ML*(Q). (4.17)

At scales L*, Ώ e J/£* with probability exceeding 1 — a. When this happens we have,
by definition, ML*(Ω) ̂  a. Hence,

μ c 3 J L * . w , ρ ( ^ L * ) ^ ( l - « ) 2 ^ l - 2 ^ (4-18)

Next, for xeZd consider Ί(x)6fL*, the event ^ L * translated by x. As explicitly
illustrated in Fig. 3b for the two-dimensional case, it is not hard to see that

^L* (4.19)

kd-[ =

Indeed, the right-hand side of (4.19) implies there is no connection from

U T(ίcL*)CL* to U Ύ(ίcL*)dC3L* [where we use Ύ(x)A to denotes the translation of
k k

the set A by x]. We therefore have, by subadditivity,

μB^ w, β ( ^ ) ̂  1 - Σ μB^ w. «(T(£L*)^). (4.20)

(4.21)

However, since C3L*Ci?L*, by the domination Lemma 3.1b, for all the £,

( ) =
FKG
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Thus, noting that 5̂ L

C* is a positive event (i.e. an event for which the indicator
function is FKG positive),

— k

After averaging over disorder, using (4.18) and the definition of a in (4.6), we obtain

ί-e'^-* (4.23)

(4-24)

as claimed.
Iterating the rescaling inequality n times, we have for Ln = 2"L*,

Pasting together 2d translations and reflections of the event Λ£, as illustrated in
Fig. 4, it is seen that those configurations in which all of these Λ£'s occur contribute
nothing to the expectation of σoσx if ||x|| ^ 6L (cf. Eq. (3.10)). Thus, for any x with
||x|| =6L n, we have

<S^7>^<Γ»*ll/ 6 L\ (4.25)

Since, according to Proposition 3.4, the limit ξ exists, Eq. (4.25) implies that
ξ ^ 6L*, provided L* > ξf. Evidently

+ 6. D 4.26)

4iii. A Critical Point and the Bound v ̂  2/d. It only remains to prove the existence
of a critical point.

Theorem 4.4. Let ρa be a continuous, FKG-increasing family of single-bond
measures of the type described in Proposition 3.5. Suppose, further, that for a
sufficiently small, ξ(oc) <oo, while for some α e R , ξ(cή is infinite and/or there are
multiple Gibbs states. Then there is a critical point, ac, at which ξ diverges
continuously.

Fig. 4. Decay of correlations
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Proof. Let us define αc via

)}. (4.27)

Observe that, by hypothesis, αc is nontrivial. By the semicontinuity result of
Proposition 3.5,

Γ 1 (αc)=l imΓ 1 (α) . (4.28)
α|α c

The only danger is that at occ, ξ is finite. Were this the case, by the corollary to
Proposition 4.1, we would have ξ/αc) finite. Using the continuity of finite volume
probabilities, it is seen that, if ε is sufficiently small, within some scale larger than ξf

(e.g. at scale ξf +1), the defining condition in Eq. (4.4) is violated at αc + ε. However,
we could then use the argument of Theorem 4.2 to demonstrate that ξ(ac + ε) is
finite, which contradicts the definition of αc. •

Evidently, ξ~ί(<xc) = 0 and, in particular, at αc the condition in Eq. (4.4) is
satisfied at all scales.

Corollary. Let ρβ or ρλ be a family of measures of the type described in the Remark
preceding Proposition 3.5, i.e. ρβ given by

Pίj = d 1-expί-βfij]

with the distribution of physical couplings βVj fixed (and sufficiently smooth to
satisfy condition (2.7M)y), or ρλ given by

jp\jh, with prob. λ
PiJ=d\Pi?l with prob. (ί-λ) '

where p\j} and p\f are distributed according to probability measures ρ l 5 ρ2 satisfying

Qi ^ Qi
FKG

Then under any conditions which ensure a nontrivial βc or yc, ξ is bounded below, up to
logarithmic corrections, by ε~2/d, where ε = \βc — β\ or \λc — λ\ respectively.

Proof Let us quickly define ξf by the condition

±}. (4.29)

By checking the arguments of Proposition 4.1 and Theorem 4.2, it is easily seen
that

ξf~ξf*ξ. (4.30)

Applying Theorem 2.1 for the convex case or (the multiplicative version of)
Theorem 2.2 for the scaling case, we have, at a distance ε from the critical point, ξf

^>Kε~2ld with K a constant, or

ε" 2 ^ (4.31)

for ε small enough. •
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Appendix. The Rescaling Lemma

Here we prove Lemma 4.3, which is a rescaling inequality along the lines of the
percolation inequalities of [23, 7] (see also [18]) for the event JΓh. [See Eqs.
(4.13)—(4.14) for relevant definitions.] The only essential difference between the
proof below and the percolation arguments is that here some attention must be
paid to boundary conditions. To ease the exposition, we will run through the proof
in two dimensions; afterwards, we will indicate all modifications necessary for the
higher-dimensional cases.

Proof of Lemma 4.3. We start by restricting to d = 2. Ultimately, we will be
concerned with wired boundary conditions on the region B2L. There, the event Λ£L

is produced with the stated probability estimate by showing that, with not
unreasonable probability, J¥2L occurs either in the upper half or in the lower half of
B2L (denoted by Bι

2L and B\L respectively) with wired boundary conditions
imposed on these smaller regions. Explicitly, let us denote by J^L(J^b

L)
the event that J^L occurs entirely in the region x2>0 (x2<0). Shortly, we will
establish the quenched estimate

^k,w, ρ (^D^[μ^,w, ρ (Λ;)] 5 , (A.i)

so that if μBL>wtβ(JlQ ^ 1 — y^α, then μ β | L , w , ρ ( ^ l ) ^ l - | a . From this, the desired
bound is straightforward. Indeed,

1 - μB2L, Wf flMSJ ^ μB2L, w, β ([Λ 2 I] c u l^J) (A.2)

(where [ — ] c denotes complementation), since the probability that JV2L does not
happen does not exceed the probability that it fails only in the top and bottom
halves of B2L. The insertion of a wiring configuration along the line x2 = 0 only
enhances the right-hand side of (A.2) because \_JV*2iχ, \_JV21X and an additional wire
are all FKG-positive events. However, the wire thermally decouples the two events
and we get, as a further degradation of (A.2),

1 -μB2L,w,Ω(^2L)S [μ^,w^([Λ[] c ) [ / ^ , W , ^ 2 L ] C ] (A.3)

Ostensibly, the right-hand side is still correlated (the wrong way) for a disorder
average. However, the first factor depends only on Ω in the region B\h and the
second on Ω restricted to B\L. Thus, the final averaging may be performed in the
separate regions which, using the pruported bound

allows

l-fiB2L,w,Ω(Λ~2L)^τ-5«2. (A.5)

This is the stated estimate for d = 2.
We now face up to the task of deriving (A.I). Consider, for the moment, the

region
D L = { x e Z 2 | - 1 2 L ^ x 1 ^ + 1 8 L ; - 3 L ^ x 2 ^ + 3 L } , (A.6)

which should be regarded as the regions BL and T(6L, 0)BL (the translate of BL by
6L units in the xx -direction). Suppose that the events «Λ£ and T(6L, 0)y^ occur
simultaneously. Then, as illustrated in Fig. 5, the two dual paths "almost touch".
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Since we will be concerned with these events in regions larger than BL - where
boundary conditions are more favorable for negative events - we may use the
μ ^ w β ( —) and ^(6L,O)BL,W,Q(~)) probabilities of these events to estimate the
probability of their simultaneous occurrence.

Given that both of these Λ£'s happen, we would like to see the two dual surfaces
joined together. To this end, observe that in the region {0^x1 ^ +6L; — 3Lrgx2

^ + 3L} (the center square in Fig. 5) where there are potentially two crossings,
there must be a highest and a lowest crossing. We may thus condition on the event
that όγ is the highest surface and ό2 the lowest in this region. (These surfaces will
not, in general, be disjoint.) The existence of these dual surfaces - in the subset
of {O^ qrg +6L; — 3 L ^ x 2 ^ +3L} bounded by them - is equivalent to free
boundary conditions where they are located. This, of course, favors the formation
of additional surfaces. Hence, the probability of a path joining <jγ and o2 (within
{Org qrg +6L; — 3L^x2^ +3L}) with the wired boundary conditions on DL is
larger than the probability of finding a path between the locations of oγ and ό2 in
the measure which is wired on {Orgx^ +6L; — 9L^x2S +15L} (a translation
and rotation of BL). The latter will be bounded below by the probability of
observing (the translation and rotation of) Λ£ without regard to the details of the
locations of the surfaces όγ and o2.

Summing over all possible pairs of surfaces (which represents a partition of the
measure), we have that the wired probability in DL of observing a dual path
between the lines x1 = — 6L and xι = 12L is bounded below by products of
probabilities of translations and rotations of J£ in the corresponding BL with
wired boundary conditions. Observe that we have so far only used the FKG
properties of the FK random cluster measure on a fixed realization Ω.

The above reasoning is summarized, graphically, in Eq. (A.7) below:

xProbΩ [ (A.7)

Now, upon quenching, we may exploit the disorder FKG properties for
these (negative) events. Then, using translation invariance, we obtain

D
!)

(A.8)
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The event JίL
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Translate of J¥1

\
N

0 /

= The region BL

Fig. 5. Two surfaces

T
6L

i

Extending the argument across yet another 3L x 3L square, one obtains

(A.9)

where EL is the 6 x 1 region of scale L. Of course, negative events in wired regions
are favored by moving the boundary further away, so the event depicted on the left-
hand side of (A.9) is less likely than the same surface occurring in the wired 8 x 1
region of scale L. Hence (A.9) implies (A.I).

The higher dimensional analogue of the argument runs along a similar track.
In d = 3, one can first paste surfaces in the xx-direction - which requires five
versions of JΓL - to obtain a long strip. These strips can be pasted in the ^-direc-
tion, again five being required to achieve the desired effect. The result, then, in
three dimensions is

or, in general,

25

5 d - i

(A.10)

(A.11)

Given this bound, the steps described at the beginning of the proof are
identical. •
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