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2Background & Smirnovʼs Proof

Work of Smirnov takes place on the triangular site lattice, equivalently hexa-
gon tiling of  C.

Hexagon yellow:
Hexagon blue:

probability p.

probability (1–p).

 Critical point at p
C
 =       , i.e. 

 p > pc  percolation of yellows
 p < pc   percolation of blues

Central Practical Goal
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u(z) = P (U(z)),

•  With boundary and analyticity conditions (more later), u and related 
functions are uniquely specified (conformally invariant).

then as lattice spacing tends to zero, u(z) converges to an “appropriate” harmonic functions.
Similarly define the functions v and w.

•  The said harmonic functions are linear on the equilateral triangle and satisfy Cardyʼs Formula.

U(z):
A

B

C

z



3Background & Smirnovʼs Proof

Key Ideas

I. Harmonic Triples
•  u +  i

3 (v - w) and all cyclic permutations of this are analytic functions.
•  The above analytic functions are not independent, e.g. they add up to 1; so in ac-
tuality only have one analytic function.

•  u, v and w are conformal transformations of the linear (Carleson-Cardy) functions from 
the equilateral triangle.

•  Hence Cardyʼs formula comes for “free” once it is shown that (u, v, w) converge to the appro-
priate harmonic triple on “any” conformal domain.

•  We have Cauchy-Riemann type equations of the form

and cyclic permutations thereof.  Here ŝ  is any direction and τ = exp( 2π i
3 ).

II. Lattice Functions

•  Boundary conditions will come more or less directly from definition of functions.

•  Cauchy-Riemann Equations? Certainly not.  Herein lies the main difficulty.
•  These conditions are lattice independent and only uses Harris rings type arguments.

Dŝu = D(τ ŝ)v
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Discrete Derivatives and Color Switching

•  The discrete derivative is given by 

which is seen to equal

P [U(z + â ) \ U(z)] - P [U(z) \ U(z + â )].

The first term in the above display we denote by Ua
+ (z) and the second we denote by Ua

− (z).

u(z + â) − u(z)

z

A

C

B

z

A

C

B
z � â



•  Now we can derive the necessary CR relations: let â  & b̂  be two lattice vectors as shown, then

i.e. the probabilities of the two “CR–pieces” are the same. 
(Some conditional/partitioning arguments were used here).

•  Without going into details, these relations, together with a contour integration, is enough to push through a proof.

•  It is a miracle of the triangular site lattice that these innocuous looking CR relations 
hold without apology.

Unconditioned region

z

A

C

B

z� b̂

Unconditioned region

z

A

C

B
z � â

4bBackground & Smirnovʼs Proof

Ua
+ = Wb

+



5Background & Smirnovʼs Proof

Difficulties With Other Lattices
A number of items make the triangular site lattice special:

•  On the macroscopic level, any reasonable candidate function will have derivatives (pieces) which are 
of three–arm type.  This, together with lattice structure (not to mention linear form of Cardy s̓ formula 
on an equilateral triangle) makes the triangular geometry especially well-suited for this line of attack.

•  The lattice level CR–
relations follow from col-
or symmetry.  Fact that 
pc = 1

2  certainly indicated 
this symmetry, however, 
the other percolation 
systems with pc = 1

2  e.g. 
bond square lattice, suf-
fer from “collision” prob-
lems with any attempt to 
switch colors.

•  On the other hand, for other site lattices, e.g. the square lattice, with pc no longer 1
2 (no self–dual sym-

metry) the connectivity properties also change when going from the direct to the dual model, which 
makes this approach apparently hopeless.

shift for CR

“collision”



6Triangular Bond Model

Model under consideration:  Based on triangular lattice bond percolation problem.
L. Chayes and H.K. Lei, Random Clus-
ter Models on the Triangular Lattice, 

to appear in J. Statist. Phys

(1)  Bonds independently blue: p / not–blue: (1–p).

(2)  On each up–pointing triangle – 8 configurations – 
may as well reduce vis–á–vis connectivity properties:{

(3)  Now a locally correlated percolation 
problem.  Self–dual (via ★   – ▲  transforma-
tion) at a = e.  And critical – ae > 2s2 [CL].

a s e

(4)  Note, s = 0 (i.e. a+e = 1) is exactly triangular site percolation problem:

Claim:
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Add in single bond events (probability s ≠ 0)
Introducing split hexagons 

into the problem.⇔

Remark:

Unfortunately, full triangular bond lattice problem too hard.
•  Introduce additional (local) correlations.

•  Only three out of six possible splits of hexagons are present, hence 
no color switching symmetry. But each mixed hexagon has reflection 
symmetry through the y-axis and reflection through the x-axis fol-
lowed by color reverse symmetry.

•  Now color-switching looks plausible, but must somehow allow 
“sharing” of hexagons – analogue of collisions.



8aModel Under Consideration

•  We will focus attention on a certain local arrangement 
of hexagons, called flowers.  

•  The hexagon in the center of a flower are called irises; 
the six hexagons surrounding an iris are called petals.

•  We tile the domain with hexagons, where some 
hexagons are designated to be irises, such that:

(1) The flowers associated to the irises are disjoint.
(2) No boundary hexagon is an iris.

•  Each iris is allowed to be pure blue, pure yellow, or mixed 
with probabilities a, a (a   ≡  e) and s, respectively (so 2a+3s = 1), 
except... 

•  Petals and hexagons not part of a flower are only allowed to be 
pure blue or pure yellow (independently), each with probability 1

2 .

•  In triggering situations, where the iris is only allowed to be 
pure blue or pure yellow, each with probability 1

2 .  Note that 
this introduces local correlations in our system.

Geometric Setup

Specifics
Now we specify what states each hexagon is allowed to be in.

•  Disjoint flowers are independent.



8bModel Under Consideration

•  On the triangular site lattice, one has complete color symmetry at each site.  We cannot hope for this on the 
triangular bond lattice.  However, one can still hope for some form of color symmetry to be restored locally.  In 
light of this, the flower is the smallest such local structure - with all requisite symmetries - that one can consider.  
•  Indeed, due to reflection plus color reversal symmetry, the probability of a connection between petal a 
and petal b is in fact exactly the same for yellow as it is for blue, e.g.:   

Flowers

Triggering

•  Unfortunately, one needs much more than this.  It is only with the advent of triggering that the 
requisite (local) color symmetry is restored.

•  Triggering configurations consist of only 3
16  of all possible configurations on a flower.

•  We pay a hefty price for this restoration of local color symmetry:
•  These local correlations are enough to destroy the FKG property in general. 
(But we still have the FKG property for path events, which turns out to be sufficient for 
our results, in particular, that the model is critical in the usual sense of 2D percolation.)

•  On the bright side, these deviations due to triggering reassure us that our model is indeed differ-
ent from the triangular site model and cannot be viewed as an “easy” limit of it.

•  A host of other difficulties to follow.

x

x

aa

b b



9Path Designates

As we only have color symmetry on the level of flowers, it is natural to consider collections of 
paths.  More precisely, key to our program is the concept of 
Path Designates

•  Consider the case where there is only one flower in the 
entire domain and a path which visits this flower exactly 
once; then there must be an entrance hexagon - the very 
first hexagon of the flower the path uses - and an exit hexa-
gon (after which the path never visits the flower again).  
Note that both the entrance and exit hexagons are petals.
•  A path designate will simply specify the entrance and 
exit hexagons of flowers (in order) with no regard to how 
these two are connected within the flower; in the region 
complementary to the flower, the path must be specified 
completely.

•  Given a path designate , we let  denote the event 
that there is a realization of  in blue, i.e. there is a 
blue path which agrees with  on the complement of the 
flower and connects the entrance and exit hexagons (both 
must be blue) in blue within the flower.  Similar for   .

•  Note that a path designates can be 
thought of as a collections of paths, 
but apparently not useful as a partition 
of the configuration space.

•  We generalize these notions in the 
obvious way to the case of multiple 
flowers and multiple visits to a single 
flower.

•  For our purposes, we do not let a path designate start on an iris.



10Color Symmetry Without Conditioning

We are now ready to state a basic result (simplest of its type): 

Let r and ′r  denote points (hexagons) which are not irises.  Let  denote the event of a blue 
path between r and ′r , and similarly for .  Let , with a similar definition for 

.  Then

Lemma 1

We will prove the result flower by flower and then concatenate.  We make the 
following definition for convenience:

•  Let  denote a flower and let  denote a collection of petals of .  Let  denote 
the event that all the petals in  are blue and that they are blue connected in the flower.  
Let  denote a similar event in yellow. 

We have the following result on local color symmetry:

Lemma 1.1 For all ,

.

•  We will in fact need the multiset version of Lemma 1.1 (i.e.   and ) 
but due to limitations of flower size, these cases do not present any additional difficulty.
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•  We condition on the petal configurations.  Let  denote a petal configuration on  and  
its color reverse.  It is enough to show that (for all )

.
•  It may be assumed that all petals of  are already blue in ,  is not a trigger, and 

 is not already (blue) connected in .

•  Due to petal counting,  cannot have more than 3 components 
which are disconnected in .  The only possible case for  having 3 
disconnected components is the alternating configuration, in which 
case the only possibility for connection is the pure state in the iris.

•  We are down to the case of two separates components in  that need to be connected (we 
have implicitly absorbed all blue petals adjacent to  into ).  Here we have:

•  Micro-environment duality: in this (2–component) case, either all the blue petals of  are 
blue connected or the yellow petals of  are yellow connected.

•  In the case of two non-adjacent blue petals and the rest of the petals yellow, there is exact-
ly one mixed iris state which gives the required connection.

•  Therefore it suffices to consider the case of  having two non-adjacent blue petals 
which need to be connected and the rest of the petals all yellow.

•  Thence  = a + s for this case, and with a similar result for yellow. 
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Given Lemma 1.1, the proof of Lemma 1 is almost immediate.  

•  First observe that if we let  denote the collection of path designates starting at 
 and ending at , then 

and similarly for 

•  Since the union is not disjoint, we will use inclusion-exclusion and prove equality on 
a term by term basis (note that ).

•  We need some notation: if  is a path designate, we write 

where  are flowers,  and  are entrance and exit petals,  is a path in the com-
plement of flowers connecting  to , and r is used to denote the hexagon at r, etc. 

•  Assume for simplicity each flower is used only once.  Then we have

This is exactly equal to  P( ) by Lemma 1.1.



13Color Symmetry Without Conditioning

•  For the more general case, note that multiple paths involving the same flower (or multiple visits to 
the same flower) have to be treated in one piece, i.e. we will need to 
consider multiple  sets. But this is exactly the content of Lemma 1.1; 
we are done.

Remark:  All this (along with assumption of periodic floral arrange-
ment & ae ≥ 2s2) can be used to establish typical properties of 2D per-
colation systems which indicate critical behavior:

•  No percolation of yellow or blue.
•  Rings in annuli (with uniform probability) @ all scales.
•  Power law bounds on connectivities.

But for us, this is just the beginning.  We must face up to problem of color symmetry for trans-
missions in presence of conditioned paths.

,

,

,
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Recall that for CR we need to condition on two paths and change the color of a third.  (All paths 
considered are supposed to be disjoint.)  Previous strategy: exploit color symmetry on the level 
of flowers and (using designates) invoke an inclusion/exclusion type argument.

•  We can restore color 
symmetry by replacing 
the usual rules concern-
ing disjointness with sto-
chastically implemented 

*-rules:

(1)   When the color in question is at a disadvantage, allow certain (conditioned) petals to be shared.   

•  Due to lack of color symmetry on small scales, conditioning will break the symmetry. Problem:

Example: Note:  This is obvious in presence 
of triggering.  But anyway would 
happen even without triggering.

Transmission Ports

Conditioned Sites

(2)   When color in question is at an advantage, forbid from touching (i.e. using a hexagon adjacent to) 
petals already used by the conditioned set.

•  Triangular lattice (all monochrome hexagons can be split).
•  Can view this as accommodating the collisions.

•  Necessary (reason will be clear later) since we can only work with the color(s) of the conditioned set. 

1
2  (Trigger)

+ +
a + 2s



15Color Symmetry Under Conditioning

The *-rules will be implemented by random variables:

Definition  Let  be a flower and  a proper subset of the petals of .  Let  be a set of petals on the 
complement of .  For each such ,  pair we have a 3-valued random variable , which controls shar-
ing of petals & close encounters and an additional 2-valued random variable , which controls the shar-
ing of irises.

The ultimate (but not penultimate) lemma is that overall “balance” can be achieved (we shall 
omit the proof):

Lemma  There exists a set of *-rules (laws for all relevant random variables) such that for any 
points x and y the probability of a *-transmission from x to y in the “complement” of any paths  
&  is the same for blue as it is for yellow. 

Here *-transmission means, depending on the values of the auxiliary random variables and the relevant colors in-
volved, the possibility of leeway provided for the sharing of hexagons and/or adherence to no close encounter rules.

Previous Example

Always fine

with probability
s

2(a + 2s) .



16Crossing Probabilities

What does all this mean for our functions uN   , vN and wN ?  (N denotes lattice spacing of N −1) 
•  Recall uN    , vN and wN represent probabilities of self-avoiding but possibly self-touching crossings.

•  We will in fact prove CR–relations – and convergence to the appropriate harmonic functions – for modi-
fied lattice functions  and .

•  In most cases, the *-version of the functions are simply 
indicators of the relevant events (where z is at the vertices 
of hexagons), with all the *-rules taken into account.

•  However, when z is at the vertex of an iris hexagon and 
the path under consideration goes through the iris, then 
e.g.  is in fact the expectation of a random variable 

, where  is equal to 0 or 1 as before unless 
the iris is pivotal for the event in question to be achieved, 
in which case it is 1

2  (e.g. the path would have led to a 1 
had the iris been blue and a 0 had it been yellow).

z
A

C

B

u(z)

z

A

C

B

w(z)

z
A

C

B

v(z)

∉{0,1}



17Crossing Probabilities

•  Path which satisfy the “event” 
only come near z with vanish-
ingly small probability.

•  Any path of a configuration in  
∆  which is not close to 

z will lead to “five and a half” arms, 
the existence of which is also van-
ishingly small.

Despite these seemingly 
drastic deviations from the 
original function (especially 
the derivative), we still have 
that, e.g.  
uniformly (on compact sets 
disjoint from the boundary) 
and hence recover the result 
for u, v, and w.

fn (x)

x

fn (x)
~

x

z
A

C

B
5 1

2  arm event



18Summary of Technical Difficulties

We now give a summary of certain technical difficulties we encounter (the price we pay for restora-
tion of color symmetry).

I. FKG inequality and RSW lemmas.
•  FKG was ostensibly difficult, but the assumption of a2 ≥ 2s2 and the result in [CL] made it easy.
•  For RSW, among other difficulties, had to actually read Kestenʼs book. 
•  Tragedy of RSW: lost rights to arbitrary floral arrangements.

II. Arms and Exponents.
•  A five and a half arm argument, along with a three arm argument in the complement of a line 
segment was needed to show equivalence of Carleson-Cardy functions. 
•  Due to local correlations, standard KvB or Reimerʼs inequality does not apply, needed old fash-
ioned conditioning argument.

III. Full Flower  vs. “Used” Flower.
•  This was needed in the conditioning argument in II.  
•  Seemingly “obvious”, but involved meticulous and 
systematic consideration of all possibilities.

IV. The Iris in Cauchy-Riemann Switch.
•  No sensible mechanism to have path designate 
start @ iris.  CR–relations require effort.

V.  Producing the Lowest Path for Conditioning (loop erasure).



19Loop Erasure

To actually switch color, recall that we condition on some “lowest” path.

•  We must be able to unambiguously partition the 
space of configurations with the events “Γi is the low-
est path”.  To this end, we need to ensure some paths 
are self-avoiding and non-self-touching (strictly self-
avoiding).

•  However, recall that not all our paths are strictly self-
avoiding.  Geometrically it is clear that any path can 
be turned into a strictly self-avoiding path by deleting 
all loops.  In our context, there are two problems: 

(1) We must still keep all loops which “capture” z.
(2) The random variables may cause certain paths 
to be “dumped” after deletion of loops.

More precisely, to decide whether some  is in , we check all paths in  which satisfy the geometric 
criterion of connecting  to  and separating z from  against the random variables , so suppose 
the path  visits a flower  multiple times: 

•  The first time through the flower is “free”
•  For the second pass through the flower, the portion of flower used by first pass now defines the con-
ditioned set , which sets the values of .  Similarly for further passes.
•  Hence unless the path receives the proper “permissions” from all the relevant , it is useless for 
achieving the event.

Unconditioned region

z

A

C

B
z � â



It is not a priori clear that if Γ in ω achieves the event, then the reduced version  in ω also achieves the event, 
since loop erasure may mean changing the conditioned sets  in one or more passes through flowers.

20Loop Erasure

Example

A partial result of the type needed in fact does turn out to be true, and this is all we need.

Definition.  We define the last lasso point of a path to be a shared hexagon or a close encounter 
pair which is part of a relatively simple closed loop of the path with z in its interior.  We have 
similar definitions for the next to last lasso point, etc.

1

2

3

5

4

6

z

In fact, the statement that the fully reduced version of 
Γ (i.e. all loops erased except for the one necessary 
for “capture” of z) satisfies the event is false:  

 = {5,  2}
 = {3,  6}

 = {2,  6}
 = {3}

Transmission: (a + 2s)

Trigger

Transmission: 1
2

4

3

5

1

6

2

4

3

5

1

6

2
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Lemma.  Suppose ω is in .  Then in ω there is a path satisfying the requirements of  
such that the part of the path from  to the last lasso point necessary for the capture of z 
can be regarded as having no sharings and no close encounters with itself.
We shall not prove all of this, but only demonstrate one simple case that one must consider.  
Again it is enough to consider what happens in a single flower.

There is nothing to prove unless a transmission through the iris is required to get to c.  We call the first petal 
visited by the path in this transmission port and the last petal the terminus.  Case considered here: Single 
transmission with no hexagon shared and with the port & terminus diametrically opposed.

Let  be a flower.  Let  denote the 1st petal visited by path in its first pass through   .  Let c denote the last 
petal of  visited by path before capture of z.  Must show e0→c reduces to a strictly self–avoiding path.

•   cannot be equal to the terminus, because then transmission is not 
actually needed in the reduced path (since capture of z is purported to 
take place after the transmission).

•  But if  is the port then in the reduced path we simply have 
a direct (unconditioned) transmission to the terminus and no 
random variable will be involved.

•  Similarly  cannot be a neighbor of the terminus.

We are done in this (almost trivial) case.  There are many more cases that need to be considered, 
in particular the case where a petal is shared by the unreduced path.

Port

Terminus

¿ e0 = ??

•  Similarly for a neighbor of the port.

We are out of petals.



22Conclusion

(I)  Wrap–Up.  After much work, result is that lattice functions uN    , vN & wN for this  
model converge to the “Cardy–Carleson” functions.

Pretty much a complete proof that the continuum limits of both systems are exactly 
the same;  Reasonable and fairly robust statement of universality.

I.e. the same result as for triangle site lattice model.

Central dogma for theory of critical phenomona since the 1960ʼs.

(II)  Limitations  
 (a)  Not a standard (well known) percolation model.
 (b)  Within context of model, didnʼt get most complete result.

(c)  Aside from some practical (and technical) considerations, did not learn much about 
the nature of and convergence to continuum limit – beyond what was already known.

Although model does indeed have parameters –“some generality”.


