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Abstract: Using a graphical representation based on the Wolff algorithm, the (classical)
d-dimensionalX'Y” model and some related spin-systems are studied. Itis proved that in
d = 2, the predicted discontinuity in the spin-wave stiffness indeed occurs. Further, the
critical properties of the spin-system are related to percolation properties of the graphical
representation. In particular, a suitably defined notion of percolation in the graphical
representation is proved to be the necessary and sufficient condition for positivity of the
spontaneous magnetization.

Introduction

Among the most noted early achievements of the renormalization group was the analy-
sis of the defect (vortex) unbinding transition in two—dimensional systems with Abelian
symmetries [B, KT]. The definitive (and experimentally accessible) prediction of this
analysis is the occurrence of discontinuities at the edge of the low—temperature phase.
Such a phenomenon is remarkable in and of the fact that the transition itself, by any
other criterion is continuous. In the language of superfluid systems, the above mentioned
discontinuity occurs in the superfluid density; for spin-systems, it is the spin-wave stiff-
ness; sometimes known as the helicity modulus. This prediction has been born out by
theoretical, numerical and experimental (and analog/experimental) tests; cf. the review
articles [N, M] and references therein. In this note, a complete mathematical proof for
the (classical) 2- XY model is provided.

The method of proof employs the graphical representation —or cluster representation
— due to Wolff [W] (more precisely, the graphical representation that is implicit in the
Wolff algorithm). The importance of understanding this representation was stressed in
[PS] and this representation was exploited in [A] in the study of the “vortex-fAeg”
model. In [CM,], critical properties of the spin-system and the graphical representation
were shown to be related. Here some characterizations are presented: Up to constant
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factors the magnetization in the spin-system is equal to the percolation density in the
Wolff-representation and the susceptibility is “equal” to the average size of the connected
clusters. Of more immediate relevance is the fact that the spin-wave stiffness tested in
finite volume is directly related to crossing probabilities in the graphical representation
and in particular, a small stiffness implies and is implied by a small crossing probability.
If this probability is “too small” then, using elementary rescaling ideas borrowed from
rigorous percolation theory, it tends to zero exponentially at larger scales (which further-
more implies exponential decay of correlations). Thus, the stiffness is either uniformly
positive at all scales or it is zero. The existence of a low temperature phase with power
law decay of correlations (proved in [FS]) thus implies a discontinuity of the stiffness at
a positive temperature. A related class of problem — in the sense that the RG equations
turn out to be nearly identical — are the one dimensional long-range discrete models, e.qg.
1/r2 1sing model. In this context, the magnetization at the critical point plays the role of
the spin-wave stiffness and it was predicted in [T] to be discontinudlis(ttte Thouless
effect). This was rigorously established in [ACCN] by vaguely similar methods: graphi-
cal representations and “real space renormalization group” inequalities. However, in the
rigorous as well as in the renormalization group arenas the deeper relationship between
these two problems is still unclear.

The remainder of this is organized along the following lines: Below, the definition
of the spin-wave stiffness used in this note is provided. In the next section, the Wolff
representation is developed. Here, the key relationship between the spin-wave stiffness
and appropriate crossing probabilities is derived. This will be followed by the section
in which the main result — the discontinuity of the spin-wave stiffnesg n 2 — is
established. In the final section, some auxiliary results will be stated (but not proved)
and in the appendix, complete proofs of these results and various properties of the Wolff
representation will be provided.

Spin-wave stiffness

The spin-wave stiffness is the appropriate notion of a leading correction to the bulk free
energy when the surface tension is zero. It may be defined as follows: Consider a regular
finite volumed- dimensional shap® with two (separated) boundary components. Let

Vr, denote the lattice approximation to this shape at s€alee. the intersection of

74 with the image of V that has been uniformly scaled by a factok oThe general
strategy is to consider the difference in free energies of the system with uniform boundary
conditions and twisted boundary conditions Bp. For typical ferromagnetic spin-
systems, “uniform” means that all the boundary spin are aligned and “twisted” means
that the two boundary components are individually aligned but are anti-parallel. For
the purposes of this note, the above is sufficient. In more generality, one may consider
cylindrical or even toroidal geometries which, in other contexts, are arguably a better
choice, cf. the discussion in [FIB]. Modulo constants,ffog> 1, the log of the ratio of

the twisted and uniform partition functions serves to “define” the spin-wave stiffdess

Let us proceed more cautiously and define this ratiead<z (V9L with 3 the
inverse temperature ag@) a geometric constant (which is essentially the capacitance)
to be described below. A spin-wave stiffness may be defined via the limiting behavior of
K (V,3); since there is no general proof that the limit exists, let alone is independent
of V, the matter will be left as it stands. Suffice it to say that it for &ngf a roughly
annular shapdg (V, () tends to zero then all possihi€;,’s tend to zero (and similarly,

ind > 2,ifany K (V, 3)L%? — 0, then they all do).
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Remark.In addition to the above mentioned geometries that will not be considered, it

is worth noting that there is another class of geometries that also won'’t be considered:
One may try to define the spin-wave stiffness in geometries where thenecag¢han

two boundary components, the first two twisted/aligned and the rest free. The prominent
example (which more or less falls into this class) is a hyper-rectangle where one pair
of opposing faces is twisted/aligned and the other-2(1) faces are free. Modulo the
geometric constant to be discussed below (in these cases, one would presumably have to
solve a free boundary problem which, for rectangular geometries is particularly simple)
a spin-wave stiffness could be “defined” pretty much as above. In all cases that have now
been described in this note, the finite volume stiffnesses have definitive stochastic geo-
metric interpretations in terms of crossing probabilities. (In the case of toroidal boundary
conditions, this is not obvious — certainly it does not follow immediately from anything

in this — but it is nevertheless true [G/M For the boundary conditions introduced in

this remark, it is indeed obvious and the relationship between this version of the stiff-
ness and appropriate crossing probabilities follows mutates mutandis the derivation in
Proposition 1.) For independent percolation, it is not hard to show that if the probability
of a crossing from the inside to the outside of an annulus at any scale is less than some
small number (the value of which depends on the details of the shape) then the system
is subcritical. (Arguments for percolation using annuli have appeared in a variety of
contexts, e.g. [C, Cly A].) Statements of this sort are sometimes possible with graph-
ical representations of spin-systems, e.g. [CCFS] (and a number of systems discussed
in [CMI, CMII] although an explicit proof has not been written). But these systems are
usually more difficult due to the dependence in these problerh®ondary conditions

(This, in a nutshell is what gives the work in this note a formidable appearance.) Typi-
cally, one must say that if the (annular) crossing probability is sufficiently sSmedbse
boundary conditions that optimize the crossing probabifityn the system is in some

sort of high temperature phase. Further, one would like to relate crossing probabilities
in such boundary conditions to an appropriate surface free energy or response function.
On the other hand, it is only for independent percolation (to the author’s knowledge)
where any such statement is possible concerning crossing probabilitiestafigles

for the type of boundary conditions appropriate to a definition of spin-wave stiffness
or surface tension. Indeed, for percolation, it is possible to show that if the “easy-way”
crossing of a “squat” hyperrectangle (e.g. &2 2L x --- x 2L x L) is small then

the system is subcritical (see, e.g. [CC] Prop. 2.10). And, for independent percolation,
it is not hard to see that the easy-way crossing of rectangles is small if and only if the
crossing probability from the inside to the outside of various annuliis small. These rela-
tions between these crossing probabilities in these geometries are readily established for
independent percolation because of the essential abseanglmdundary conditions in

this system. Similar statements along these lines (again, to the authors knowledge) have
not been made in the context of graphical representations of spin-systems when the rel-
evant boundary conditions are used. Further, and on an even more ambitious track, is to
establish a definitive equivalence between smallness of hard-way crossing and easy-way
crossings. (One direction for percolation —and even for certain graphical representations
is obvious; hence the nomenclature.) To the best of the author’s knowledge, this has only
been done irl = 2 for independent percolation for the case of a square — the so called
RSW lemma.[R, SW]. Specifically, it was shown that if the probability of crossing a
square is small then the probability of crossing rectangles the easy-way is also small.
However, this has not yet been provediin- 2 and in fact even i = 2, this has not

yet been pushed below the level of a square. Needless to say, such results also haven't
been established in the context of graphical representations for spin-systems. Indeed
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here, not even a two-dimensional result along the lines of the RSW lemma is known to
the author. In particular, it is worth noting that for models with self-duality — such as
the Potts or (generalized) Ashkin—Teller models, an RSW lemma for a square crossing
may represent the first step in proving, for the case of a continuous transition, that the
self-dual point is the unique transition point. (In [BC] such results have recently been
established if the transition éscontinuoug However no such geometric lemmas seem

to exist and certainly not for the representation used here (for which the author is not
aware of any self-dual properties). Finally, the harder problems such as the analogs of
RSW lemmas inl > 2 and, ind = 2, RSW lemmas for more extreme cases than squares
—in boundary conditions easily related to surface tension or spin wave stiffness —also do
not appear to be any easier in the context of interacting graphical problems than they are
in the independent case. Hence these issues will not be discussed further in this work and
we will stick to the straightforward definition of stiffness as defined in annular regions.

Letustend to the constagfl’). The models under consideration will have spins with
bounded values iRR?; let us assume that the bound is one. Furthermore (and here rather
vaguely) let us assume that if the Hamiltonian is expressed in “deviation” variables, the
leading non-constant term is quadratic with coefficient 1/2.¢etbe the solution to
Laplaces’ equation with boundary valug4 on the two components. Then

_ 2 3d
g—/vwwm d'a. )

With this definition, it is an elementary exercise to show, for the stan8arfdnodel on
74 (e.g. as defined in Eq. (3.a) with unit couplings between neighboring sites) that

Jim_lim KL(V,5) = 1 @

In this paper, all that is needed is the simplest of annular shapes: Considler2in
the square of size g = {71,272 | —3 < 21 < +3,-3 < 2, < +3} and Sy
defined accordingly. The shape of interestliss S3) \ S(1). Ind > 2 the corresponding
generalization is used: a hypercube of side 3 with the central hypercube of side 1 removed.

The Representation: Notation and Definitions

Although the primary concern is with the behavior of uniform systems on regular
dimensional lattices, the cluster representation is just as easily formulated on an arbitrary
(finite) graph. Indeed, there is a need for these sorts of generalities in order to formulate
the representation of these systems in the presence of boundary conditions. Thus, let
G denote a finite graph with sitég; and bondsBg. For eachi € Sg, let §; denote a

2d spin of length one and for each j) € Bg, let J; ; > 0 denote the couplings. The

XY -Hamiltonian is given by

HGY = =" J; ;8- 5. (3.a)
<7]>
Writing a; andb; for the magnitude of th& and X components respectively, (here
0 < a;,b; < 1) and allowingr; = +1 ando; = +1, HZ" may be read

Hé(y = — Z Jq',’j[aqjajTiTj + bibjcriaj]. (3b)
(1,5)
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For most of what remains, we will have little use for the specifics of Xié-model
itself. Indeed, we might just as well allow the right-hand side of Eq. (3.b) to define the
model along with some constraint on thg,(®;) that makes one a decreasing function
of the other and aa priori distribution, f;, for theb; (which need not be continuous).
For the purposes of brevity we will, however assume complete symmetry between the
a's and theb’s and that these objects are bounded.

The idea behind the Wolff representation is to develop one (or both) of the Ising
systems in an FK [FK] random cluster representatfofihe partition is given by the

usual
26.2.0)= Y [ [Ldnae 2y tewemmtttiniod, )

In the aboveg andr are notation for the Ising configurations Grwhile J denotes the
collection of couplings. And similarly; andb will be notation for configurations of the
magnitude of the spin components with tiyeunderstood to be a function of tihg

Let us start by writing the Ising portion of the Hamiltonian in Potts foemu; =
264,05, — 1, etc. For fixed, let us trace over the variables and then trade thedegrees
of freedom for those of an FK expansion. Thus 4t(3) denote the Ising partition
function according to an Ising Hamiltonian written in Potts form:

Hé =- Z Jij aia;(7,-; — 1), (5.2)
(.3

Zh@p) =3 e e, (5.b)

Here, the dependence of these quantitiegjpand the ) has been temporarily sup-
pressed. Unfortunately, the relevahtis twice what appears in Eqg. (5.b) so to avoid
confusion, this parameter will stay with us. Performing the afore mentioned trace and
expansion, we arrive at the weights (or density function) of a joint distribution fa¥ the
and bond configurations C Bg:

V¥ (b,w) = Z2(28) [ ] €700 Wiyap(w), (6)
(4,3
whereWs.25(w) are the usualg( = 2) FK weights with couplingd/; ;b;b; and inverse
temperature 2:

Wias(@) =q““ [[ »ii [] @—piy) 7

(i,4) €w (i,5) ¢w

pij = 1—e?P7i.i%% andC(w) the number of connected components:oThe measures
defined by the weights in Eq. (6) will be denoted&jy(—).

Let us consider the two marginal distributions: (i) Integrate outitliegrees of
freedom to obtain a measure on the bond configuratiornBhese will be denoted by
Mg(—)—orMj ¢ (), with x signifying possible boundary conditions to be discussed
later. (ii) Integrate out they degrees of freedom (i.e. skip the FK step and tracesthe

1 In typical simulations one does this for only one of the Ising variables — as will most often be the case
here — but picking a direction at random. However, as argued in|[[Civmay be advantageous to use the full
expansion in conjunction with tHavaded Clustealgorithm.
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variables). The associated density will be denotegpy-) — or p; o (—) when the
need arises. Finally, let us consider the conditional FK measufes(—) determined
by the weights in Eq. (7). These distributions allow for a convenient decomposition of

M (-),
Ms(-) = /b dps®l™ (). ®

Some immediate applications of these measures have been discussed in [A ghd CM
For example, in the usual isotropic XY caseTjf; is the (bond) event thais connected
to j then, e.g. in free boundary conditions,

2Mi g(T3,5) > (5i - 55)8,g 9

with (—) g ¢ denoting expectation with respect to the canonical distribution. This has
been supplemented by a lower bound proportional to a powBtnE(T; ;). Here we

will obtain a lower bound of a constant timéés ¢(7; ;). Of direct relevance to the
present work is the following:

Let K1 (A, B) denote the spin wave stiffness as discussed in the introduction. Ex-
plicitly, let Z*"°" (A, 3) denote the partition function on the annulis with boundary
conditions obtained by setting all boundary spins on the inner boundayd the outer
boundary ) to the X-direction. (Or, in the language of Eq. (3.b), all thés are set to
their maximum values and; = 1 on the boundary.) Similarly lef* ° (A, ) be the
partition function for the setup iA ;, where the spins on the outer boundary are pointing
in the positiveX -direction and the spins on the inner boundary pointing in the negative
X-direction. Thus

e—ﬁg(A)KL(A,ﬂ)Ld*Z = Zz’o*(AL7 ﬁ)/Z7’+O+(AL, B3).

Concerningthei*o*” system, itis clear that we can treat this setup along the lines already
described: the boundary spins act as a single spin albeit with a concentrated distribution.
Letus denote le , (—) the bond measure associated with these boundary conditions
and letT; , denote the event of a connection between the inner and outer boundaries of
Ap.The first claim is

Proposition 1.

12" (A, 0)/2"° (AL, B) = M} 4, (T3.0)-

In particular, the spin-wave stiffness is related in a simple way to the probability of a
connection between the boundary components;of

Proof. As is well known, in random cluster measures corresponding to Potts systems
with spins on the boundary set to some fixed value, the weights for the graphical config-
urations are given by the standard one with the interpretatiorCtha} counts only the
components that are disconnected from the boundary. (Equivalently, up to an irrelevant
constant, one counts all the sites that are attached to the boundary as pagarthe
component.) Thus if we write

7 (4,8 =3 /b VI (b, w), (10)
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the sum contains terms both with and without connections between the boundary. On
the other hand, in an situation where two separate boundary components in the Potts
system are set to different values, the rule for counting clusters is the same but now
bond configurations containing connections between these components are assigned zero

weight. Thus for fixed, the formula for the Wolff Weightyﬁw’f (b, w) corresponding

to the twisted boundary condition is seen to be identical except for the provise that
does not conneatwith o — and here these configurations are discounted. The desired
result is established. O

It is plausible that these measures enjoy various monotonicity properties but in any
case, this will not be easy to prove. In particular it turns out that the joint measure is
not strong FKG. What can be proved is that for a certain class of boundary conditions —
that are called the-boundary conditions — the measureslo have the FKG property.

The precise definition of a@-boundary condition is somewhat intricate but this class
includes every boundary condition of physical interest where one could expect the FKG
property to hold e.g. free, periodic and setting all the boundary spins to the positive
X-direction. Furthermore, among all boundary specifications irctiatass, this latter
mentioned ignaximalin the sense of FKG. The same dominance therefore holds over
the ®-class of specifications which is defined as superpositions of specifications from
the®-class. This larger class has the property that its restrictions to smaller sets are also
in the ©-class relative to the “larger” boundary component. The relevant consequences
of the above is summarized in the form of a lemma:

Lemma 2. LetG denote agraph. ThenforevdryC Sg, thereis a class of specifications
on L called the®-class such that: (1) IK > L andx* is a ®-specification orlL then
the restriction of the various measure%v’*(—), M (), etc. to the complement of

K is itself a®-class specification of. (2) Setting all spins of. to the X -direction
constitutes a»-class specification oh; this is denoted by th&" boundary conditions
onL. If « is any other®-specification orL then

1* *
M5.6(=) 2, Mj.6(=)-

A proof (including relevant definitions) will be supplied in the appendix. The im-
portant point is that among all possible relevant boundary conditiong;grthe one
that maximizes the probability &, , is preciselyM%ML(—).

Main Results

With the identity of Proposition 1 and the inequalities of Lemma 2, the main argument
reduces to a standard routine in percolation theory:

Theorem 3. There is artg = €g(d) such that if for anyi.g, MEALO(E,O(LO)) < ¢o then
. 1++ _
Llinoo Mﬁ,AL (Tz,o(L)) =0

In particular, under these conditionM[g’;xL (T,,) tends to zero exponentially fastin
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Proof. Suppose tha]b/JI};;AL0 (T%,0(Lo)) < € < € with ¢y to be specified below. Let

N > 1 and consider the eveffi ,(N Lo) for the annulusd y,,. Divide Ay, into a
grid of scaleLq so as to have the appearance ofA# on the large scale lattice. If
P 12— olis apathindyy,, each “site” on the large scale lattice that is visitedfy
has achieved an event likg ,(Lo) — with the possible exception of the sites next to the
boundary. Let us denote a “site” df; to be “occupied” if the analog of th&, ,(Lo)
occurs and is vacant otherwise. For the sake of being definitive, let us deem all sites
neighboring the boundary ofy to be occupied. It is clear thatl} ,  (T,,(NL))
does not exceed the probability of a connection between #mel theo of Ay in the
large-scale problem.

Now of course, these site variables are not independent. However let us regard a
sublattice consisting of a fraction -/3? — of these sites as sitting in the center of
a translate ofd;, with these translates ol situated in such a way that they tile
the lattice. With the maximizing boundary conditions on these translatels, gfthe
sublattice of site occupation variablae independent and their probability is bounded
above bye. There are 3possible ways to design such sublattices (depending on which
sites are chosen as the centers) such that each site; 6§ a central site on one of
these 3 sublattices. Thus an “occupied cluster” consistingiofnterior sites ofA y
must have at least/B? of these sites on (at least) one of the sublattices. Therefore, the

probability of a given occupied cluster withf interior sites is less thar)}%/3’. The
minimum sized cluster that permits the possibility of an actual path is essemiahd
there are only of the order d¥¢~? starting points on the inner boundary. Hence

++ d
My ayr(Tio) < CoNT™H Y M)V )5 (11)
K>N-Cy

with C; and C, constants of the order of unity andd) < (d — 1) the connectivity
constant. It is evident that i < ¢g = 1/)\3d, the stated result follows. [

Corollary. For the 2d models, the spin-wave stiffness does not go continuously to zero
at any temperature. In any dimension, if the conditions of Theorem 3 hold for some finite
Lo, there is exponential decay of correlations in any limitihestate.

Proof. According to Lemma 2, the>-state that maximizes the probability f ; is
always thel*-state. Under the conditions stated in Theorem 3, it is clear that the proba-
bility of T;_; tends to zero exponentially in any limiting-state. (Later we will show that
under these conditions there is in fact a unique limitirgtate.) Using a bound along
the lines of Eq. (9), exponential decay for the 2-point function is readily established:
The factor of 2 in this inequality is for th& andY -component pieces @f - 5;. Indeed,
in anyboundary conditior,

(s$Ms5X)5 6 = (bioibjo)f.g < M 6(Ts)) (12)
with connections through the boundary included in the definitidhj; 9f Since, among
limiting ©-states this is maximized in the limitirtf-state, the correlation among the
X - components goes to zero. The correlations betweel th@mponents (im-states)
would be maximized in the analog of thé&-state and hence, by the symmetry between
X andY components, is also (in amy-state) always bounded by the probabilitylgf;
in the 1*-state. Thus we actually recover Eq. (9) for thestates and the conclusion
about exponential decay is immediate. The statement concerning the spin wave stiffness
is a tautology, however cf. Remark 2 below. [
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Remark 1.If 3. is definedby the infimum over temperatures at whigh, (5) is zero,

then, by an obvious continuity argumeht,.(5.) > 0ind = 2. For theX'Y-model, the
results of [FS] (concerning the existence of a region of power law decay of correlations)
rather easily imply that such a discontinuity occurs at a fifiite

Remark 2.Starting with [NK], detailed renormalization group studies of this “class” of
problems predicts aniversalvalue of 3. K, (3.). Although the present derivation is a

far cry from a proof of any such statement, it is worth observing that the same set of
results proved in Theorem 3 hold for a variety of models with “O(2)” characteristics —
e.g. theZy,,-clock models — using theamevalue ofeg. Thus we have a universal lower
bound ons. K (8.). This is analogous to (and borrowed from) the current situation in
percolation theory: various crossing probabilities — even the one used here — which at
the critical point are believed to converge to universal values at large length scale, can
at least be shown to satisfy uniform bounds with universal constants.

Additional Results

Some further results will be stated below but all the remaining proofs have been relegated
to the appendix.

The usual definition gbercolationin correlated models starts, in finite volume, with
the probability of a connection to the boundary in the boundary conditions that optimize
this probability (cf. [CM], definition following Eq. (11.11)). Here, let us define:

Definition. LetA C Z be a finite connected set that contains the origin and et
denote the event that the origin is connected to the boundary. Let

MA(8) = M5 5 (To0n) = MaxM; , (Toon) (132)
and
Meo(8) = lim T14(5). (13b)
A B

In light of Lemma 2, the existence of this limit is not hard to establish. The actual
percolationprobabilities, denoted by’s instead oflT’s is defined as in Egs. (13) but
with the maximum taken over all boundary conditions.

Theorem 4. (A) Letm(5) denote the spontaneous magnetization. Then there are finite
non-zero constants; andc; (that depend only on minor details of the model) such that

2l (B) < m(B) < calloo(B).
(B) If m(B) = 0, there is a unique limitingp-state.
Proof. A proof will be provided in the appendix.

Remark.The results concerning uniqueness are hardly an improvement over the exist-
ing results which apply to most of these models considered here — uniqueness among
translation invariant states when the magnetization vanishes [MMPf]. Of greater con-
cern (to the author) is the connection between phase transitions in the spin-systems and
percolation in the corresponding graphical representation. This is further underscored
by the final result:
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Theorem 5. Let x denote any finite volume-measure or infinite volume limit thereof

and let(s\XstX)) e = (b;0:b;0;) % denote the (untruncated) correlation function for the
X- components. Then,

AM(T;5) = (P55 > SMH(T3 )

with ¢; andc;, as in Theorem 4. In particular, if2(6) = 0and X is defined by

X(B) = Z SEX]S[]X]

evaluated in the unique limiting-state then
EE5(|Col) > X () = SE5(Col),

whereE3(|Co|) is the expected size of the connected cluster of the origin in the graphical
representation.

Proof. The upper bound for the correlation function was derived in [A], the rest will be
proved in the Appendix.

Theorems 4 and 5 provide complete justification for the use of “percolation” as
the critical criterion in the Wolff algorithm [W] or the Invaded Cluster version of this
algorithm [CM;].

Appendix: Monotonicity Properties of the Wolff Measures

For reasons that are primarily of a technical nature, this appendix will be concerned
with generalizations of the types of models already discussed (even though such gener-
alizations are “unphysical” from the perspective of systems @With) symmetry). Thus
consider a grapty and letHg denote the Hamiltonian

Hg ==Y (Kijaia;mm; + J; jbibjoio;) (A1)
(.3

with K ;, J; ; > 0. As discussed previously, the single siteriori measures and the
range of the:; andb; as well as the constraint between them may be regarded as fairly
arbitrary: It is enough to assume that they are non-negative, uniformly bounded and
thata; goes down wheib; goes up. Finally, it will be assumed thathif achieves its
maximum value then the correspondiagis zero. Most of these assumptions can be
removed but with an unreasonable cost of labor and space. To avoid spurious notational
provisos, let us assume that the single site measures are discrete. (Indeed, since we will

always start in finite volume, the general” case can be recovered from the discrete

by a limiting procedure.) Thus we ng’g ’f( ) denote the measure on configurations

= (b; | © € Sg) defined by the weights

LK. f diaitds bibs
R0 = 2L (2802} ;28) [ e Hwsmat/ut bl TT fibs),  (A2)
(i,j)EBg 1€ESg
wheref;(b;) is thea priori probability ofb;, f = (f; | i € Sg), K = (K, ; | (i,7) € Bg)
and all other notation has been defined elsewhere.
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Proposition A.1. The measureﬁé’g’i(f) are (strong) FKG.

Proof. Letb denote a fixed configuration and teandv denote any distinct pair of sites
ing. LetA, > 0andd, denote the configuration that is zero except at theisitehere

itis equal tob,, + A, similarly for §,, with someA,, > 0. It may as well be assumed that
fulby + Ay) andf, (b, + A,) are positive. Thus, the configuratiérn §,, Vv 6, has been
“raised” at the sites, andv while b v é,, has been raised only at etc. Similarly, ifT",,

is the corresponding amount that has to be lowered (determined by the constraint at
u, the value ob,, andA ) then leta A v, denote the configuration afs that has been
lowered atu, etc. (Formally;y,, is a,, — I';, at the siteu and infinite elsewhere.) To prove
the desired claim, it is sufficient (and necessary) to show

J7K7f l’K’f l’K’f J7£7f
Rﬁg 7(@ V 6y V 5'U)Rﬁ7g 7(@) > R@g 7(@ \% 51;)%@ 7(@ \ 51))- (AS)

After cancellation of all manifestly equal terms (assumed non-zero) the purported in-
equality boils down to

(€ Zapun k(28) 24,k (20)) >
> (Zh5. @O s, S@INZL . k@D Z, 1 (25))

It is claimed that the term in the square bracket on the rhs does not exceed the corre-
sponding term on the left and similarly for the terms in the round bracket. Indeed, a
moment’s reflection will show that these two inequalities are of an identical form. Let
us therefore focus on proving

(€722 Z) s vs, 2B ZL 280 > [Z)ys, 4(28)ZLus, ;(20)],  (A.5)

and the same derivation will hold for thepairs.
It turns out that the derivation is far easier without the annoyance af the, cross
terms. Let us thus define

(A.4)

HO = _ Z JijBos0; — 1)bib;, (A.6a)
(i:)

H(U) = - Z Ji,j(éoi,a’u - l)Aubz7 (Aeb)
(i,u)

and similarly forH). In these term&/ 5 .5 ,(25) is given by

Zblvéuvév ,1(2/3) - Tr[efzﬁH(o)efzﬂH(U)efzﬁH(V)GZﬂJuwAuAv(‘;au,av 71)]. (A.7)
To get rid of the cross terms, it will be shown that

_ © _ w) _ (V) _
Bt Tu [~ 2BHO (=28HD (—28HY) 2670080800000~ D] >

ZTT[G_ZﬁH(O)e_ZﬁH(U)Q_ZBH(V)]. (A.8a)

Indeed, dividing both sides of the purported inequality (A.8a) by the right-hand side and
denoting byIE{LL (—) the expectation with respect to the Ising Hamiltoniamt inverse
temperatures, tﬁe desired (8.Aa) reads

eﬁAuAvJu,uEI

H(O)+H(U)+H(V)726(62ﬁc7u,UAUAU(%M,M —1)) > 1. (A.8b)
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Expanding the integrand in the usual FK fashion, this reduces to showing that
e PBubvTuw 4 ZSh@AuAvJu,v)Eg(onH(UHH(v)725(5%,av) > 1 (A.8c)

Here is one of the few places where the fact that the underlying model has an Ising
structure is usedt’; 5(05:,0,) > 1/2 so the left-hand side of (A.8) is at least as big as
chBA, AL Ty . FOr the remainder of the proof, it might just as well be assumed that the
underlying model is thg-state Potts model.

The remainder of this proof reduces to showing

_ V) _ (V)
E%{(O)+H(U),zg(€ 20H )ZEqu),zﬁ(e 20K )- (A.9)

This is very similar to the sorts of inequalities that were established in [C] so here the
derivation will be succinct. Lat; , = 1—¢??/i.wbi40 and letV,, denote the collection of
sets inSg each of which contains and some subset of the siteirthat are connected

to v. Expandinge: =27 in the usual FK fashion, it is seen that

eI = N rpe,, (A.10)
FEN,

with rz = [[;cr €io ng(l — €;,»), and wheréj,,. is one if all the spins i agree
and zero otherwise. However, using an FK expansion ofjthtate Potts system with
HamiltonianH, it is not hard to show

-, 1 B
El 5(0,) = B’ 2><(5)Cf Y, (A.10)

whereCr is the number of connected components of the#sethis is the expectation

of an FKG increasing function and thus the desired inequality follows — term by term —
from the fact that the random cluster model that comes from the “bigger” Hamiltonian
(i.e. HO + H®)) is FKG dominant. [

Corollary I. Consider two systems on the same grgptvith parameters/, J' and
single site measures determined by the collectibasd [’ respectively. Suppose that
J = J', meaning that for eachy, j) € Bg, J; ; > Ji ; and further suppose that - /!

in the sense that for eaah f;(b;)/ f/(b;) is an increasing function df;. Then

JK.f K f!
Pag (7)) gz Pag ()

Proof. This is an immediate consequence of the FKG properties of these measures and
the previous derivation. First, iff < f, then

[Lics, fi(b:)
filhs) = [ fi(bi) (A.11)
igg [Lics, fi(b2) Zgg

so the f-weights are of the form [increasing functionlf-weights. To establish the

desired result fod - J' it is sufficient to consider one bond at a time. Thuglet) €
B¢ and suppose that, , = J{w + L, , (with L, , > 0) and all othet/'s equal. Then

LK f J' K. f _
Rg,g 7@)/1{&& =(b) = eﬁLu,vbubuEgé726[625Lu,vbubv(éau,% 1)]7 (A.12a)
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where the Ising Hamiltoniad// was defined in Eq. (5.a) — and thledependence has
been suppressed. After a few manipulations along the lines of those in the previous

proposition, Eq. (A.12a) reduces to

J7K7f 1/7Kl‘f =
Ry (0)/R5 5 = (b) = Ch(BLy vbuby) + ShBLy wbubo)E 72X, ), (A.12D)

Héglg u,v
whereXr, . is the indicator of the event thatis connected te. The sines and cosines
are manifestly (non-negative) increasing functions, efhile the random cluster term is
the expectation of positiveevent and is therefore an increasing function of all couplings
in the Hamiltonian — including thé's. O

Let us now turn to a discussion of boundary conditions.d efenote a graph and
let L C Sg. The starting point will be the consideration of conditional measures for

z/;/gi’ﬁ’i(—), the measures corresponding to the weights in Eq. (6) cast in the more
general framework — subject to specificationdloand the consequence of these spec-
ifications on theb marginals. A specification will be called a®-specification if (i)

the values¥; | i € L) are specifiedd; = b} ;i € L and (ii) L is divided into disjoint
componentg;, 3, ... ¢; such that the counting rule in the FK expansion deems all the
sites in and connected to eaghto be part of the same cluster.

Remark.Back in the spin-system, one interpretation abapecification is obvious:
having determined thg on L, the signs of theX-components of the spins — thg's

— are locked together within each component and they take on both values with equal
probability. On the other hand, the same graphical weights emerge if one (and only one)
of the components is deemed to represent spins pointing in the paXitilieection.

The reader is cautioned that at this stage, the signs &f t@mponents of the boundary
spins still have all theia priori degrees of freedom.

There is a natural partial order on the set of all possibispecificationssx > '
if (1) L O L’ and eachy; onLL \ I/ is set to the maximum value, (2) eakh > b,
i € LNL" and (3), the components of ¢}, /45, ...¢; “contain” the +’-components
03,05, .7, in the sense that if, N ¢% 7 0 thent%, C ¢%. The following is easily
seen:

L8

. ip . *J, K, . .
Corollary 1. If xis a g-specification ang; ; i(—) is the associated measure on the

remainingd’s then p;'j]g’g’i(—) is (strong) FKG. Furthermore i > %' in the sense
described abovel - J' and f >~ f’ then

*J K, f « J K f
Pg.g ) F%G Pg.g ().

Proof. The above is clear given the following mechanism to createspecification:
to fix the values ob; onIL, concentrate tha priori measures. To lock the components,
introduce artificial/-type couplings between all pairs of sites in a given component and
send these couplings to infinity; the desired measure is recovered in the limit.
this procedure involves highdrs and highe’s. ]

W sJ Wo'J K, f

Proposition A.2. Let Vs.g *’K’i(—) and Vag (—) denote two Wolff measures

with all primed quantities below unprimed quantities in the sense described. Let
J,K, ' J K, f .
M;fg* i(—) andMﬁg 1 (—) denote the corresponding bond measures. Then
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*JKf *JKf

)z = ().

Proof. Let.A denote an increasing bond event. Let us write as in EqQ. (8)

FKG

«J K f

MG H(A) = Zp; Lo, (A.13)

and similarly forMﬁg £F (A). The desired result follows immediately from the FKG

properties of the usual random cluster measures: p§th*(A) and uFK* (A) are
increasing functions ob and furthermore, it = ' and.J = J’ then,uFK*(A) >
PR (A, O

Thus far, theY” degrees of freedom have been left completely unspecified. Now
the same sorts of specifications will be considered for these objects and this defines
a @-specification: In addition to & specification]L is divided into disjoint compo-
nentsys, . .. 7,, on which ther-variables act in unison. A recapitulation of the previous
arguments yields:

Proposition A.3. Letx denote a@ specification and Iepﬁ g ( ) denote the corre-

sponding measure. Th%g ( ) is FKG. Further, ifx > ’, meaning the same as

above regarding thg’s, the f's and the/-components whil&’ - K andthey,, ..., 7,
contain theyy, . . ., m, then

*l,ﬁ,i */ll,ﬁl,i,
Ps.g (=) F§G Ps.g (=),

and accordingly
*J K,f * J’ K’ f

)z L.
In particular, the FKG maximizing boundary condition (&) in the ®-class is the;
set to the maximum value;, = 1 and theyq, . .., 5,, being the individual sites df. The
latter is, of course automatic if, maximized= a; = 0.

FKG

Proof. Follows the lines of the previous arguments along with the observation that any
increasing function of is a decreasing function oéf O

Superpositions of-specifications do not constitutecaclass boundary condition
nor, in general, are they FKG measures. This is the usual situation in ferromagnetic
systems and is of no serious consequence since we have knowledge of the maximizing
measure in the-class. In any case, let us define theclass as that which consists of
superpositions from the-class. The following is pivotal:
LemmaA.4. LetL C Sg and letx denote a®-specification orl.. LetK > L and

. wJ K, - LK, f - .

conS|derpﬁjg*i(—)||Sg\K, the restriction ofp;jg* i(—) to the remaining sites. Then
this restricted measure is of the-class.

Proof. Itis sufficient to discuss the case wheiis itself a purem-specification. Consider

*J, K, . .
the full Wolff measuresv,; 5 i(—) on configurationsd, n, b), wherew andb are as
have been described anddenotes configurations of FK bonds in the random cluster
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expansion of the-system. Thus, e.g. thg{’g’i(f) measures are obtained by integrating

out then-bonds. Now, to study the restricted measure, let us condition ow an &)
configuration orK and sum over alj-configurations (and, if desire@d;configurations)
pertaining to the bonds & \ K. Having done so, a sum must be performed over all

the external configurations with the appropriate weights assign@sﬁg’f’i(—). But,

sincex is a®-specification, it is clear that eacl,(, b) configuration ork provides a
©-specification o \ K: Indeed, thé-values are fixed, the componeiits. . . ¢;, are
just thew-components while thg-components constitute the, . . ., 7. O

It is now straightforward to establish the various results claimed in Theorems 4 and
5. Indeed everything except the statements concerning uniqueness follow immediately
from the existing machinery. Here, to simplify matters notationally, let us again assume
thatg, J, and K and the grapld are fixed and omit any further explicit reference. All
of Theorem 5 amounts to the stated bound of the correlation function in terms of the
connectivity function. Recalling that in @-state, the everif; ; includes connections
via the boundary component, these bounds are easily proved:

Proof of Theorem 8f x denotes @ state, it is claimed that
(sPXVSEXTy = B2 [biby 1y (T)), (A.14)

whereE7[ ] denotes expectation with respect to {#ig—) measure on thé-config-
urations. Indeed, fixing andw, the Ising spins are equalifis connected tg — either
directly or via one of the boundary components — and are uncorrelated with at least one
of them having equal probability of1 otherwise. Summing over all with b fixed

and then summing ovéryields the identity displayed in Eq. (A.14). But obvioudly,

andb; cannot exceed their maximum values and this provides the upper bound, with
equal any uniform bound on these values. On the other hgitd; ;), b; andb; are all
increasing functions df and hence, the FKG inequality provides the bound

(sPMSLXTy > X [0y (T ) ES (b B[, ]. (A.15)

The quantitiesZy[b;] and E7[b;] may be estimated by considering the worst case
boundary conditions on the neighborhoodsafid; which yields the uniformly positive
constant,. For thed-dimensionalXY-model, we have; = 1 andc, = (2/7)(e~2%).
O

Proof of Theorem 4 (AFirst observe that the lower bound follows because the magneti-
zation can be estimated from below by the average oflthés in any state, and by using

the 1*-state, this is obtained. In fact, for t8€Y” model, and several other of the models
under consideration, both of these bounds follow because it can be proved, via correla-
tion inequalities, that th&* state is exactly the state that produces the magnetization.
For the general case, consider the addition of the usual magnetic term:

ST st =37 28bi(0,, 4 — 1) +hb; (A.16)

to the Hamiltonian. The effect of this additional term may be incorporated into the
present analysis by the addition of a single “ghost” spin connected to all other spins
with coupling h. (Here the ghost spin plays more thier of a boundary site than a

full blown XY -degree of freedom.) Now for a.k, the (thermodynamic) magnetization
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can be defined by evaluating the actual magnetization (the averagesbftis in any
convenient state. Thus, using the limiting state constructed ffdsoundary conditions,

it is clear that for a. positiveh, the magnetization is bounded above by the (limiting)
average fraction of sites connected to the ghost site or the boundary,;L@étnote the
box of scalel and define

1 +
m1(h ) = 1= 3 M, (L), (A-17)

iEA

whereT; g is the event that the siteis connected to the boundary or the ghost site and
the sum includes the contribution from the boundary sites themselves. The desired result
follows from two elementary facts: First, by continuity in finite volume,

lim 7(h, 5) = (0, 6). (A.18)
Second, by a sequence of fairly standard manipulations,
M (B) = Llim s, (8) = Llim 71(0, 5). (A.19)

Now, forh > 0 suppose we were to evaluatéh, 3) starting onA i usingl* boundary
conditions and lettingv — oo. Since, for finiteV, this is a certified finite volume-
state, we increase the value by conditioning on the event that the grid that diviges
into small copies ofA 1, is fully occupied. Thus, at each stage it is learned that

M, (hy 0) = ﬁ SN < ). (A.20)

PEANL

Takingh | 0 (along a sequence of points of continuity) the desired result follows from
Egs. (A.18) and (A.19). O

Proof of Theorem 4 (BLetG denote a grapf, C Sg andK = Sg \I. Lety = {(i, k) €
Bg | i € I,k € K} denote the connecting bonds andIli¢t) denote the contour event
that everyw-bond in+ is vacant. In what follows, it is assumed that if there is any
specification org, it is of the ®-type and involves only the sites K.

It is claimed that ifT"(y) occurs then the measure on tlie [ i € I) lies below,
in the sense of FKG, the “free measure” bthat would be obtained if all thd, j
on v were zero. Indeed, for any fixéddon K andn-configuration the weights for the
configurations & | i € ) are given byZ,"(28) [1,; 1ye, efirlaiar—bibe) 711 (23)
whereZ!- denotes the free boundary partition function &fd’ denotes the partition
function with (®-type) boundary specification provided hyOn the other hand, the free
weights are given simply bzgﬁf(Zﬁ)Z;’f(Zﬂ). Thus it is clear that irrespective of the
information on the outside, the conditional weights are a decreasing function times the
free weights. Now, supposing thAt,.(5) = 0, it is easy to establish uniqueness of the
limiting p-measures among-states: LetA C Z? be a finite connected set. LEtD A
with E so large that the probability of amconnection between anddz in thel* state
on E is negligible. Under these circumstances, there are contours sepavdtomg 0 2;
let v denote such a contour and Iéty) denote the event thatis the outermostsuch
separating contour. These contour events form a disjoint partition so, up to the negligible
probability of a connection betweenanddE, the restriction of the maximal measure
in E to A is below a superposition of free measures on various separating contours.
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Now consider the lowest boundary condition®nsetting all the boundarny; to one
and lockingtheir spin directions. By: < b symmetry, the same outermost contours (in
then expansion) appear with the same probabilities and we find — again up to negligible
terms — that this worst measuredhrestricted toA lies above the previously discussed
superposition. Evidently the two restricted measures coincide i@ the Z¢ limit and
hence all the limiting>-measures coincide at least as far as the distributioh's afre
concerned. However, the same argument implies uniqueness for the various other Wolff-
measures in the-class and, given the fact that all bond clusters are finite, uniqueness
among all Gibbs measures of theclass follows easily. O
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